These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
472 related items for PubMed ID: 25674814
21. Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. Sloan RC, Moukdar F, Frasier CR, Patel HD, Bostian PA, Lust RM, Brown DA. J Mol Cell Cardiol; 2012 May; 52(5):1009-18. PubMed ID: 22406429 [Abstract] [Full Text] [Related]
28. Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Gollmer J, Zirlik A, Bugger H. Diabetes Metab J; 2020 Feb 15; 44(1):33-53. PubMed ID: 32097997 [Abstract] [Full Text] [Related]
29. Mitochondrial dynamics in diabetic cardiomyopathy. Galloway CA, Yoon Y. Antioxid Redox Signal; 2015 Jun 10; 22(17):1545-62. PubMed ID: 25738230 [Abstract] [Full Text] [Related]
30. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD. J Am Coll Cardiol; 2009 Nov 10; 54(20):1891-8. PubMed ID: 19892241 [Abstract] [Full Text] [Related]
31. The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise. Schilling JD. Antioxid Redox Signal; 2015 Jun 10; 22(17):1515-26. PubMed ID: 25761843 [Abstract] [Full Text] [Related]
32. MITOCHONDRIAL DYNAMICS AND METABOLIC REGULATION IN CARDIAC AND SKELETAL MUSCLE. Abel ED. Trans Am Clin Climatol Assoc; 2018 Jun 10; 129():266-278. PubMed ID: 30166722 [Abstract] [Full Text] [Related]
33. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. Wu T, Qu Y, Xu S, Wang Y, Liu X, Ma D. FASEB J; 2023 Aug 10; 37(8):e23099. PubMed ID: 37462453 [Abstract] [Full Text] [Related]
34. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy. Li CJ, Zhang QM, Li MZ, Zhang JY, Yu P, Yu DM. Chin Med J (Engl); 2009 Nov 05; 122(21):2580-6. PubMed ID: 19951573 [Abstract] [Full Text] [Related]
35. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Hafstad AD, Boardman N, Aasum E. Antioxid Redox Signal; 2015 Jun 10; 22(17):1587-605. PubMed ID: 25738326 [Abstract] [Full Text] [Related]
36. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. Amorim PA, Nguyen TD, Shingu Y, Schwarzer M, Mohr FW, Schrepper A, Doenst T. J Thorac Cardiovasc Surg; 2010 Nov 10; 140(5):1160-7. PubMed ID: 20850803 [Abstract] [Full Text] [Related]
37. Regulatory networks controlling mitochondrial energy production in the developing, hypertrophied, and diabetic heart. Finck BN, Lehman JJ, Barger PM, Kelly DP. Cold Spring Harb Symp Quant Biol; 2002 Nov 10; 67():371-82. PubMed ID: 12858562 [No Abstract] [Full Text] [Related]
38. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Karwi QG, Sun Q, Lopaschuk GD. Cells; 2021 Nov 21; 10(11):. PubMed ID: 34831481 [Abstract] [Full Text] [Related]
39. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, Mohr FW, Schwarzer M. Cardiovasc Res; 2010 Jun 01; 86(3):461-70. PubMed ID: 20035032 [Abstract] [Full Text] [Related]
40. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Westermeier F, Navarro-Marquez M, López-Crisosto C, Bravo-Sagua R, Quiroga C, Bustamante M, Verdejo HE, Zalaquett R, Ibacache M, Parra V, Castro PF, Rothermel BA, Hill JA, Lavandero S. Biochim Biophys Acta; 2015 May 01; 1853(5):1113-8. PubMed ID: 25686534 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]