These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 25679734

  • 1. Interface-capturing lattice Boltzmann equation model for two-phase flows.
    Lou Q, Guo Z.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013302. PubMed ID: 25679734
    [Abstract] [Full Text] [Related]

  • 2. Theoretical and numerical study on the well-balanced regularized lattice Boltzmann model for two-phase flow.
    Zhang Q, Jiang M, Zhuo C, Zhong C, Liu S.
    Phys Rev E; 2023 Nov; 108(5-2):055309. PubMed ID: 38115487
    [Abstract] [Full Text] [Related]

  • 3. Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows.
    Guo Z, Shi B, Zheng C.
    Philos Trans A Math Phys Eng Sci; 2011 Jun 13; 369(1944):2283-91. PubMed ID: 21536575
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Meshless lattice Boltzmann method for the simulation of fluid flows.
    Musavi SH, Ashrafizaadeh M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb 13; 91(2):023310. PubMed ID: 25768638
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability.
    Lallemand P, Luo LS.
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun 13; 61(6 Pt A):6546-62. PubMed ID: 11088335
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows.
    Krämer A, Küllmer K, Reith D, Joppich W, Foysi H.
    Phys Rev E; 2017 Feb 13; 95(2-1):023305. PubMed ID: 28297853
    [Abstract] [Full Text] [Related]

  • 19. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field.
    Huang R, Wu H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar 13; 91(3):033302. PubMed ID: 25871241
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.