These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cardiac-specific overexpression of human stem cell factor promotes epicardial activation and arteriogenesis after myocardial infarction. Xiang FL, Liu Y, Lu X, Jones DL, Feng Q. Circ Heart Fail; 2014 Sep; 7(5):831-42. PubMed ID: 25107671 [Abstract] [Full Text] [Related]
3. The Wilms' tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. Wagner KD, Wagner N, Bondke A, Nafz B, Flemming B, Theres H, Scholz H. FASEB J; 2002 Jul; 16(9):1117-9. PubMed ID: 12039855 [Abstract] [Full Text] [Related]
4. Wilms' tumor 1 (re)activation in evidence for both epicardial progenitor and endothelial cells for cardiovascular regeneration. Aguiar C, Brunt KR. J Mol Cell Cardiol; 2015 Jul; 84():112-5. PubMed ID: 25863145 [No Abstract] [Full Text] [Related]
5. The roadmap of WT1 protein expression in the human fetal heart. Duim SN, Smits AM, Kruithof BP, Goumans MJ. J Mol Cell Cardiol; 2016 Jan; 90():139-45. PubMed ID: 26686990 [Abstract] [Full Text] [Related]
6. Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini D, Iannelli P, De Mori R, Marchetti C, Pozzoli O, Gentili C, Zacheo A, Germani A, Capogrossi MC. J Mol Cell Cardiol; 2010 Apr; 48(4):609-18. PubMed ID: 19968998 [Abstract] [Full Text] [Related]
7. Cardiac regeneration from activated epicardium. van Wijk B, Gunst QD, Moorman AF, van den Hoff MJ. PLoS One; 2012 Apr; 7(9):e44692. PubMed ID: 23028582 [Abstract] [Full Text] [Related]
8. Biological Systems and Methods for Studying WT1 in the Epicardium. Velecela V, Fazal-Salom J, Martínez-Estrada OM. Methods Mol Biol; 2016 Apr; 1467():61-71. PubMed ID: 27417959 [Abstract] [Full Text] [Related]
9. Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Del Campo CV, Liaw NY, Gunadasa-Rohling M, Matthaei M, Braga L, Kennedy T, Salinas G, Voigt N, Giacca M, Zimmermann WH, Riley PR. Cardiovasc Res; 2022 Jan 29; 118(2):597-611. PubMed ID: 33599250 [Abstract] [Full Text] [Related]
10. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. Braitsch CM, Kanisicak O, van Berlo JH, Molkentin JD, Yutzey KE. J Mol Cell Cardiol; 2013 Dec 29; 65():108-19. PubMed ID: 24140724 [Abstract] [Full Text] [Related]
11. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Winter EM, van Oorschot AA, Hogers B, van der Graaf LM, Doevendans PA, Poelmann RE, Atsma DE, Gittenberger-de Groot AC, Goumans MJ. Circ Heart Fail; 2009 Nov 29; 2(6):643-53. PubMed ID: 19919990 [Abstract] [Full Text] [Related]
12. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Pérez-Pomares JM, Phelps A, Sedmerova M, Carmona R, González-Iriarte M, Muñoz-Chápuli R, Wessels A. Dev Biol; 2002 Jul 15; 247(2):307-26. PubMed ID: 12086469 [Abstract] [Full Text] [Related]
13. Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis. Deutsch MA, Doppler SA, Li X, Lahm H, Santamaria G, Cuda G, Eichhorn S, Ratschiller T, Dzilic E, Dreßen M, Eckart A, Stark K, Massberg S, Bartels A, Rischpler C, Gilsbach R, Hein L, Fleischmann BK, Wu SM, Lange R, Krane M. Cardiovasc Res; 2018 Jul 01; 114(8):1098-1114. PubMed ID: 29579159 [Abstract] [Full Text] [Related]
14. van den Heuvel-Eibrink MM, Duim SN, Goumans MJ, Kruithof BPT. ; 2016 03 01. PubMed ID: 27512758 [Abstract] [Full Text] [Related]
15. Bmi1 (+) cardiac progenitor cells contribute to myocardial repair following acute injury. Valiente-Alandi I, Albo-Castellanos C, Herrero D, Sanchez I, Bernad A. Stem Cell Res Ther; 2016 Jul 30; 7(1):100. PubMed ID: 27472922 [Abstract] [Full Text] [Related]
16. The epicardium in cardiac repair: from the stem cell view. Limana F, Capogrossi MC, Germani A. Pharmacol Ther; 2011 Jan 30; 129(1):82-96. PubMed ID: 20937304 [Abstract] [Full Text] [Related]
17. Implications of the Wilms' Tumor Suppressor Wt1 in Cardiomyocyte Differentiation. Wagner N, Ninkov M, Vukolic A, Cubukcuoglu Deniz G, Rassoulzadegan M, Michiels JF, Wagner KD. Int J Mol Sci; 2021 Apr 21; 22(9):. PubMed ID: 33919406 [Abstract] [Full Text] [Related]
18. Epicardium-derived fibroblasts in heart development and disease. Fang M, Xiang FL, Braitsch CM, Yutzey KE. J Mol Cell Cardiol; 2016 Feb 21; 91():23-7. PubMed ID: 26718723 [Abstract] [Full Text] [Related]
19. The Wilms' tumor suppressor Wt1 regulates Coronin 1B expression in the epicardium. Hsu WH, Yu YR, Hsu SH, Yu WC, Chu YH, Chen YJ, Chen CM, You LR. Exp Cell Res; 2013 Jun 10; 319(10):1365-81. PubMed ID: 23562652 [Abstract] [Full Text] [Related]
20. Up-regulation of nestin in the infarcted myocardium potentially indicates differentiation of resident cardiac stem cells into various lineages including cardiomyocytes. Scobioala S, Klocke R, Kuhlmann M, Tian W, Hasib L, Milting H, Koenig S, Stelljes M, El-Banayosy A, Tenderich G, Michel G, Breithardt G, Nikol S. FASEB J; 2008 Apr 10; 22(4):1021-31. PubMed ID: 17984177 [Abstract] [Full Text] [Related] Page: [Next] [New Search]