These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 25681941

  • 1. Short-time diffusion in concentrated bidisperse hard-sphere suspensions.
    Wang M, Heinen M, Brady JF.
    J Chem Phys; 2015 Feb 14; 142(6):064905. PubMed ID: 25681941
    [Abstract] [Full Text] [Related]

  • 2. Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles.
    Heinen M, Banchio AJ, Nägele G.
    J Chem Phys; 2011 Oct 21; 135(15):154504. PubMed ID: 22029321
    [Abstract] [Full Text] [Related]

  • 3. Short-time transport properties of bidisperse suspensions and porous media: a Stokesian dynamics study.
    Wang M, Brady JF.
    J Chem Phys; 2015 Mar 07; 142(9):094901. PubMed ID: 25747100
    [Abstract] [Full Text] [Related]

  • 4. Structure and short-time dynamics in concentrated suspensions of charged colloids.
    Westermeier F, Fischer B, Roseker W, Grübel G, ägele G, Heinen M.
    J Chem Phys; 2012 Sep 21; 137(11):114504. PubMed ID: 22998268
    [Abstract] [Full Text] [Related]

  • 5. Dynamics in dense hard-sphere colloidal suspensions.
    Orsi D, Fluerasu A, Moussaïd A, Zontone F, Cristofolini L, Madsen A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 21; 85(1 Pt 1):011402. PubMed ID: 22400568
    [Abstract] [Full Text] [Related]

  • 6. Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres.
    Banchio AJ, Nägele G.
    J Chem Phys; 2008 Mar 14; 128(10):104903. PubMed ID: 18345924
    [Abstract] [Full Text] [Related]

  • 7. Rotational self-diffusion in suspensions of charged particles: simulations and revised Beenakker-Mazur and pairwise additivity methods.
    Makuch K, Heinen M, Abade GC, Nägele G.
    Soft Matter; 2015 Jul 14; 11(26):5313-26. PubMed ID: 26054032
    [Abstract] [Full Text] [Related]

  • 8. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ, Heinen M, Holmqvist P, Nägele G.
    J Chem Phys; 2018 Apr 07; 148(13):134902. PubMed ID: 29626910
    [Abstract] [Full Text] [Related]

  • 9. Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres.
    Stopper D, Marolt K, Roth R, Hansen-Goos H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug 07; 92(2):022151. PubMed ID: 26382387
    [Abstract] [Full Text] [Related]

  • 10. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study.
    Kanehl P, Stark H.
    J Chem Phys; 2015 Jun 07; 142(21):214901. PubMed ID: 26049518
    [Abstract] [Full Text] [Related]

  • 11. Anisotropic diffusion of concentrated hard-sphere colloids near a hard wall studied by evanescent wave dynamic light scattering.
    Michailidou VN, Swan JW, Brady JF, Petekidis G.
    J Chem Phys; 2013 Oct 28; 139(16):164905. PubMed ID: 24182077
    [Abstract] [Full Text] [Related]

  • 12. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A, Videcoq A, Chartier T, Ala-Nissilä T, Vattulainen I.
    J Chem Phys; 2012 Jul 07; 137(1):014503. PubMed ID: 22779661
    [Abstract] [Full Text] [Related]

  • 13. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN, Swan JW, Su Y.
    J Chem Phys; 2015 Dec 14; 143(22):224901. PubMed ID: 26671398
    [Abstract] [Full Text] [Related]

  • 14. Test of mean-field equations for two types of hard-sphere systems by a Brownian-dynamics simulation and a molecular-dynamics simulation.
    Tokuyama M, Yamazaki H, Terada Y.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun 14; 67(6 Pt 1):062403. PubMed ID: 16241280
    [Abstract] [Full Text] [Related]

  • 15. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG, Nägele G.
    J Chem Phys; 2007 Jul 21; 127(3):034906. PubMed ID: 17655462
    [Abstract] [Full Text] [Related]

  • 16. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A, Videcoq A, Cerbelaud M, Piechowiak MA, Chartier T, Ala-Nissila T, Bochicchio D, Ferrando R.
    J Phys Chem B; 2013 Nov 21; 117(46):14509-17. PubMed ID: 24143912
    [Abstract] [Full Text] [Related]

  • 17. Simulating Brownian suspensions with fluctuating hydrodynamics.
    Delmotte B, Keaveny EE.
    J Chem Phys; 2015 Dec 28; 143(24):244109. PubMed ID: 26723653
    [Abstract] [Full Text] [Related]

  • 18. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres.
    Stopper D, Thorneywork AL, Dullens RPA, Roth R.
    J Chem Phys; 2018 Mar 14; 148(10):104501. PubMed ID: 29544259
    [Abstract] [Full Text] [Related]

  • 19. Structure and short-time dynamics in suspensions of charged silica spheres in the entire fluid regime.
    Gapinski J, Patkowski A, Banchio AJ, Buitenhuis J, Holmqvist P, Lettinga MP, Meier G, Nägele G.
    J Chem Phys; 2009 Feb 28; 130(8):084503. PubMed ID: 19256611
    [Abstract] [Full Text] [Related]

  • 20. Dynamics of core-shell particles in concentrated suspensions.
    Petekidis G, Gapinski J, Seymour P, van Duijneveldt JS, Vlassopoulos D, Fytas G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr 28; 69(4 Pt 1):042401. PubMed ID: 15169049
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.