These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


334 related items for PubMed ID: 25684226

  • 21. Tissue-type plasminogen activator-primed human iPSC-derived neural progenitor cells promote motor recovery after severe spinal cord injury.
    Shiga Y, Shiga A, Mesci P, Kwon H, Brifault C, Kim JH, Jeziorski JJ, Nasamran C, Ohtori S, Muotri AR, Gonias SL, Campana WM.
    Sci Rep; 2019 Dec 17; 9(1):19291. PubMed ID: 31848365
    [Abstract] [Full Text] [Related]

  • 22. Controlling immune rejection is a fail-safe system against potential tumorigenicity after human iPSC-derived neural stem cell transplantation.
    Itakura G, Kobayashi Y, Nishimura S, Iwai H, Takano M, Iwanami A, Toyama Y, Okano H, Nakamura M.
    PLoS One; 2015 Dec 17; 10(2):e0116413. PubMed ID: 25706286
    [Abstract] [Full Text] [Related]

  • 23. Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs.
    Strnadel J, Carromeu C, Bardy C, Navarro M, Platoshyn O, Glud AN, Marsala S, Kafka J, Miyanohara A, Kato T, Tadokoro T, Hefferan MP, Kamizato K, Yoshizumi T, Juhas S, Juhasova J, Ho CS, Kheradmand T, Chen P, Bohaciakova D, Hruska-Plochan M, Todd AJ, Driscoll SP, Glenn TD, Pfaff SL, Klima J, Ciacci J, Curtis E, Gage FH, Bui J, Yamada K, Muotri AR, Marsala M.
    Sci Transl Med; 2018 May 09; 10(440):. PubMed ID: 29743351
    [Abstract] [Full Text] [Related]

  • 24. Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury.
    Watanabe K, Nakamura M, Iwanami A, Fujita Y, Kanemura Y, Toyama Y, Okano H.
    Dev Neurosci; 2004 May 09; 26(2-4):275-87. PubMed ID: 15711067
    [Abstract] [Full Text] [Related]

  • 25. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats.
    Amemori T, Ruzicka J, Romanyuk N, Jhanwar-Uniyal M, Sykova E, Jendelova P.
    Stem Cell Res Ther; 2015 Dec 22; 6():257. PubMed ID: 26696415
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage.
    Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR.
    Exp Neurol; 2001 Jan 22; 167(1):48-58. PubMed ID: 11161592
    [Abstract] [Full Text] [Related]

  • 29. Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures.
    Piao JH, Odeberg J, Samuelsson EB, Kjaeldgaard A, Falci S, Seiger A, Sundström E, Akesson E.
    J Neurosci Res; 2006 Aug 15; 84(3):471-82. PubMed ID: 16721767
    [Abstract] [Full Text] [Related]

  • 30. Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration.
    El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y.
    Stem Cells Transl Med; 2016 May 15; 5(5):694-702. PubMed ID: 26987352
    [Abstract] [Full Text] [Related]

  • 31. Modulation by DREADD reveals the therapeutic effect of human iPSC-derived neuronal activity on functional recovery after spinal cord injury.
    Kitagawa T, Nagoshi N, Kamata Y, Kawai M, Ago K, Kajikawa K, Shibata R, Sato Y, Imaizumi K, Shindo T, Shinozaki M, Kohyama J, Shibata S, Matsumoto M, Nakamura M, Okano H.
    Stem Cell Reports; 2022 Jan 11; 17(1):127-142. PubMed ID: 35021049
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog.
    Ohuchi K, Funato M, Kato Z, Seki J, Kawase C, Tamai Y, Ono Y, Nagahara Y, Noda Y, Kameyama T, Ando S, Tsuruma K, Shimazawa M, Hara H, Kaneko H.
    Stem Cells Transl Med; 2016 Feb 11; 5(2):152-63. PubMed ID: 26683872
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR.
    J Neurosci; 2005 Jul 27; 25(30):6947-57. PubMed ID: 16049170
    [Abstract] [Full Text] [Related]

  • 39. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC, Zhang XF.
    Med Hypotheses; 2007 Jul 27; 69(6):1234-7. PubMed ID: 17548168
    [Abstract] [Full Text] [Related]

  • 40. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model.
    Yang JR, Liao CH, Pang CY, Huang LL, Chen YL, Shiue YL, Chen LR.
    Cytotherapy; 2013 Feb 27; 15(2):201-8. PubMed ID: 23245953
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.