These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
317 related items for PubMed ID: 25686737
1. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment. Wang J, Wang H, Prakoso AB, Togonal AS, Hong L, Jiang C, Rusli. Nanoscale; 2015 Mar 14; 7(10):4559-65. PubMed ID: 25686737 [Abstract] [Full Text] [Related]
2. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment. Wang H, Wang J, Hong L, Tan YH, Tan CS, Rusli. Nanoscale Res Lett; 2016 Dec 14; 11(1):311. PubMed ID: 27356558 [Abstract] [Full Text] [Related]
3. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer. Yu X, Shen X, Mu X, Zhang J, Sun B, Zeng L, Yang L, Wu Y, He H, Yang D. Sci Rep; 2015 Nov 27; 5():17371. PubMed ID: 26610848 [Abstract] [Full Text] [Related]
4. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays. Sato K, Dutta M, Fukata N. Nanoscale; 2014 Jun 07; 6(11):6092-101. PubMed ID: 24789210 [Abstract] [Full Text] [Related]
5. Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method. Wang WL, Zou XS, Zhang B, Dong J, Niu QL, Yin YA, Zhang Y. Opt Lett; 2014 Jun 01; 39(11):3219-22. PubMed ID: 24876017 [Abstract] [Full Text] [Related]
6. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. Yu P, Tsai CY, Chang JK, Lai CC, Chen PH, Lai YC, Tsai PT, Li MC, Pan HT, Huang YY, Wu CI, Chueh YL, Chen SW, Du CH, Horng SF, Meng HF. ACS Nano; 2013 Dec 23; 7(12):10780-7. PubMed ID: 24224917 [Abstract] [Full Text] [Related]
7. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. Sharma M, Pudasaini PR, Ruiz-Zepeda F, Elam D, Ayon AA. ACS Appl Mater Interfaces; 2014 Mar 26; 6(6):4356-63. PubMed ID: 24568116 [Abstract] [Full Text] [Related]
8. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application. Zhang F, Song T, Sun B. Nanotechnology; 2012 May 17; 23(19):194006. PubMed ID: 22538992 [Abstract] [Full Text] [Related]
9. A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Moiz SA, Nahhas AM, Um HD, Jee SW, Cho HK, Kim SW, Lee JH. Nanotechnology; 2012 Apr 13; 23(14):145401. PubMed ID: 22433819 [Abstract] [Full Text] [Related]
10. Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency. He L, Jiang C, Wang H, Lai D, Rusli. ACS Appl Mater Interfaces; 2012 Mar 13; 4(3):1704-8. PubMed ID: 22391479 [Abstract] [Full Text] [Related]
11. Silicon Nanowire Heterojunction Solar Cells with an Al2O3 Passivation Film Fabricated by Atomic Layer Deposition. Kato S, Kurokawa Y, Gotoh K, Soga T. Nanoscale Res Lett; 2019 Mar 15; 14(1):99. PubMed ID: 30877482 [Abstract] [Full Text] [Related]
12. Solution Processed Organic/Silicon Nanowires Hybrid Heterojunction Solar Cells Using Organosilane Incorporated Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Hole Transport Layers. Shen R, Sun Z, Shi Y, Zhou Y, Guo W, Zhou Y, Yan H, Liu F. ACS Nano; 2021 Apr 27; 15(4):6296-6304. PubMed ID: 33661604 [Abstract] [Full Text] [Related]
13. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. Shen X, Sun B, Liu D, Lee ST. J Am Chem Soc; 2011 Dec 07; 133(48):19408-15. PubMed ID: 22035274 [Abstract] [Full Text] [Related]
14. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer. Chen HY, Lu HL, Ren QH, Zhang Y, Yang XF, Ding SJ, Zhang DW. Nanoscale; 2015 Oct 07; 7(37):15142-8. PubMed ID: 26243694 [Abstract] [Full Text] [Related]
15. High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids. He L, Lai D, Wang H, Jiang C, Rusli. Small; 2012 Jun 11; 8(11):1664-8. PubMed ID: 22438080 [Abstract] [Full Text] [Related]
16. Enhanced power conversion efficiency of an n-Si/PEDOT:PSS hybrid solar cell using nanostructured silicon and gold nanoparticles. Van Trinh P, Anh NN, Cham NT, Tu LT, Van Hao N, Thang BH, Van Chuc N, Thanh CT, Minh PN, Fukata N. RSC Adv; 2022 Mar 31; 12(17):10514-10521. PubMed ID: 35424997 [Abstract] [Full Text] [Related]
17. High Performance Organic-Nanostructured Silicon Hybrid Solar Cell with Modified Surface Structure. Duan X, Zhang X, Zhang Y. Nanoscale Res Lett; 2018 Sep 12; 13(1):283. PubMed ID: 30209632 [Abstract] [Full Text] [Related]
18. Substantial Improvement of Short Wavelength Response in n-SiNW/PEDOT:PSS Solar Cell. Ge Z, Xu L, Cao Y, Wu T, Song H, Ma Z, Xu J, Chen K. Nanoscale Res Lett; 2015 Dec 12; 10(1):998. PubMed ID: 26283449 [Abstract] [Full Text] [Related]
19. Low-Pressure-Assisted Coating Method To Improve Interface between PEDOT:PSS and Silicon Nanotips for High-Efficiency Organic/Inorganic Hybrid Solar Cells via Solution Process. Subramani T, Syu HJ, Liu CT, Hsueh CC, Yang ST, Lin CF. ACS Appl Mater Interfaces; 2016 Jan 27; 8(3):2406-15. PubMed ID: 26717020 [Abstract] [Full Text] [Related]
20. Light-Trapping Characteristics of Ag Nanoparticles for Enhancing the Energy Conversion Efficiency of Hybrid Solar Cells. Fan Z, Zhang W, Ma Q, Yan L, Xu L, Fu Y. ACS Appl Mater Interfaces; 2017 Oct 18; 9(41):35998-36008. PubMed ID: 28936866 [Abstract] [Full Text] [Related] Page: [Next] [New Search]