These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1075 related items for PubMed ID: 25687008

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis.
    Gandhimathi C, Venugopal J, Ravichandran R, Sundarrajan S, Suganya S, Ramakrishna S.
    Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905
    [Abstract] [Full Text] [Related]

  • 3. Hydroxyapatite-intertwined hybrid nanofibres for the mineralization of osteoblasts.
    Sujana A, Venugopal JR, Velmurugan B, Góra A, Salla M, Ramakrishna S.
    J Tissue Eng Regen Med; 2017 Jun; 11(6):1853-1864. PubMed ID: 26354141
    [Abstract] [Full Text] [Related]

  • 4. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S.
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [Abstract] [Full Text] [Related]

  • 5. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang D, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X.
    Int J Nanomedicine; 2016 Nov; 11():1483-500. PubMed ID: 27114708
    [Abstract] [Full Text] [Related]

  • 6. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S.
    Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006
    [Abstract] [Full Text] [Related]

  • 7. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis.
    Tham AY, Gandhimathi C, Praveena J, Venugopal JR, Ramakrishna S, Kumar SD.
    Int J Mol Sci; 2016 Jul 28; 17(8):. PubMed ID: 27483240
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration.
    Gandhimathi C, Venugopal JR, Bhaarathy V, Ramakrishna S, Kumar SD.
    Int J Nanomedicine; 2014 Jul 28; 9():4709-22. PubMed ID: 25336949
    [Abstract] [Full Text] [Related]

  • 10. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ, Shalumon KT, Chen JP.
    Int J Nanomedicine; 2015 Jul 28; 10():567-84. PubMed ID: 25609962
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering.
    Gandhimathi C, Quek YJ, Ezhilarasu H, Ramakrishna S, Bay BH, Srinivasan DK.
    Int J Mol Sci; 2019 Oct 16; 20(20):. PubMed ID: 31623264
    [Abstract] [Full Text] [Related]

  • 13. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN, Panda NN, Mund R, Pramanik K.
    Carbohydr Polym; 2016 Oct 20; 151():335-347. PubMed ID: 27474575
    [Abstract] [Full Text] [Related]

  • 14. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y, Shao W, Qian W, He J, Zhou Y, Qi K, Wang L, Cui S, Wang R.
    Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():195-207. PubMed ID: 29519429
    [Abstract] [Full Text] [Related]

  • 15. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI, Cahill PA, Stokes J, McGuinness GB.
    J Biomater Appl; 2016 Apr 01; 30(9):1334-49. PubMed ID: 26767394
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis.
    Venugopal J, Rajeswari R, Shayanti M, Low S, Bongso A, Dev VR, Deepika G, Choon AT, Ramakrishna S.
    J Biomater Sci Polym Ed; 2013 Apr 01; 24(2):170-84. PubMed ID: 22370175
    [Abstract] [Full Text] [Related]

  • 18. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials.
    Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q.
    J Biomed Mater Res A; 2015 Apr 01; 103(4):1424-35. PubMed ID: 25046153
    [Abstract] [Full Text] [Related]

  • 19. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP, Venugopal J, Ramakrishna S.
    Acta Biomater; 2009 Oct 01; 5(8):2884-93. PubMed ID: 19447211
    [Abstract] [Full Text] [Related]

  • 20. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P, Kundu B, Naskar D, Kim HW, Bhattacharya D, Maiti TK, Kundu SC.
    Cell Tissue Res; 2016 Feb 01; 363(2):525-40. PubMed ID: 26174955
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 54.