These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 25695398
1. PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain. Jensen TE, Ross FA, Kleinert M, Sylow L, Knudsen JR, Gowans GJ, Hardie DG, Richter EA. Biochem J; 2015 May 01; 467(3):461-72. PubMed ID: 25695398 [Abstract] [Full Text] [Related]
2. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Bultot L, Jensen TE, Lai YC, Madsen AL, Collodet C, Kviklyte S, Deak M, Yavari A, Foretz M, Ghaffari S, Bellahcene M, Ashrafian H, Rider MH, Richter EA, Sakamoto K. Am J Physiol Endocrinol Metab; 2016 Oct 01; 311(4):E706-E719. PubMed ID: 27577855 [Abstract] [Full Text] [Related]
3. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Nakano M, Hamada T, Hayashi T, Yonemitsu S, Miyamoto L, Toyoda T, Tanaka S, Masuzaki H, Ebihara K, Ogawa Y, Hosoda K, Inoue G, Yoshimasa Y, Otaka A, Fushiki T, Nakao K. Metabolism; 2006 Mar 01; 55(3):300-8. PubMed ID: 16483872 [Abstract] [Full Text] [Related]
4. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Ross FA, Jensen TE, Hardie DG. Biochem J; 2016 Jan 15; 473(2):189-99. PubMed ID: 26542978 [Abstract] [Full Text] [Related]
5. AMP-activated protein kinase phosphorylates transcription factors of the CREB family. Thomson DM, Herway ST, Fillmore N, Kim H, Brown JD, Barrow JR, Winder WW. J Appl Physiol (1985); 2008 Feb 15; 104(2):429-38. PubMed ID: 18063805 [Abstract] [Full Text] [Related]
6. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Lai YC, Kviklyte S, Vertommen D, Lantier L, Foretz M, Viollet B, Hallén S, Rider MH. Biochem J; 2014 Jun 15; 460(3):363-75. PubMed ID: 24665903 [Abstract] [Full Text] [Related]
7. AMPK activation regulates neuronal structure in developing hippocampal neurons. Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV. Neuroscience; 2014 Feb 14; 259():13-24. PubMed ID: 24295634 [Abstract] [Full Text] [Related]
8. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. Jørgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA, Pilegaard H. FASEB J; 2005 Jul 14; 19(9):1146-8. PubMed ID: 15878932 [Abstract] [Full Text] [Related]
9. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. Birk JB, Wojtaszewski JF. J Physiol; 2006 Dec 15; 577(Pt 3):1021-32. PubMed ID: 17038425 [Abstract] [Full Text] [Related]
10. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Thomson DM, Brown JD, Fillmore N, Condon BM, Kim HJ, Barrow JR, Winder WW. Am J Physiol Endocrinol Metab; 2007 Dec 15; 293(6):E1572-9. PubMed ID: 17925454 [Abstract] [Full Text] [Related]
11. Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. Fediuc S, Gaidhu MP, Ceddia RB. J Lipid Res; 2006 Feb 15; 47(2):412-20. PubMed ID: 16304351 [Abstract] [Full Text] [Related]
12. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Shen QW, Zhu MJ, Tong J, Ren J, Du M. Am J Physiol Cell Physiol; 2007 Oct 15; 293(4):C1395-403. PubMed ID: 17687000 [Abstract] [Full Text] [Related]
13. Short-term adenosine monophosphate-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside treatment increases the sirtuin 1 protein expression in skeletal muscle. Suwa M, Nakano H, Radak Z, Kumagai S. Metabolism; 2011 Mar 15; 60(3):394-403. PubMed ID: 20362304 [Abstract] [Full Text] [Related]
15. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. Göransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, Viollet B, Hardie DG, Sakamoto K. J Biol Chem; 2007 Nov 09; 282(45):32549-60. PubMed ID: 17855357 [Abstract] [Full Text] [Related]
16. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. Culmsee C, Monnig J, Kemp BE, Mattson MP. J Mol Neurosci; 2001 Aug 09; 17(1):45-58. PubMed ID: 11665862 [Abstract] [Full Text] [Related]
17. Adenosine monophosphate-activated protein kinase is elevated in human cachectic muscle and prevents cancer-induced metabolic dysfunction in mice. Raun SH, Ali MS, Han X, Henríquez-Olguín C, Pham TCP, Meneses-Valdés R, Knudsen JR, Willemsen ACH, Larsen S, Jensen TE, Langen R, Sylow L. J Cachexia Sarcopenia Muscle; 2023 Aug 09; 14(4):1631-1647. PubMed ID: 37194385 [Abstract] [Full Text] [Related]
18. Inhibition of the KCa3.1 channels by AMP-activated protein kinase in human airway epithelial cells. Klein H, Garneau L, Trinh NT, Privé A, Dionne F, Goupil E, Thuringer D, Parent L, Brochiero E, Sauvé R. Am J Physiol Cell Physiol; 2009 Feb 09; 296(2):C285-95. PubMed ID: 19052260 [Abstract] [Full Text] [Related]
19. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. J Biol Chem; 2004 Jan 09; 279(2):1070-9. PubMed ID: 14573616 [Abstract] [Full Text] [Related]
20. AMP-activated protein kinase in the grass carp Ctenopharyngodon idellus: Molecular characterization, tissue distribution and mRNA expression in response to overwinter starvation stress. Wu W, Sun J, Ji H, Yu H, Zhou J. Comp Biochem Physiol B Biochem Mol Biol; 2020 Jan 09; 246-247():110457. PubMed ID: 32417494 [Abstract] [Full Text] [Related] Page: [Next] [New Search]