These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
387 related items for PubMed ID: 25700866
1. Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion. Sun X, Cai X, Wang RQ, Xiao J. Anal Biochem; 2015 May 15; 477():21-7. PubMed ID: 25700866 [Abstract] [Full Text] [Related]
2. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage. Fan C, Shi Z, Pan Y, Song Z, Zhang W, Zhao X, Tian F, Peng B, Qin W, Cai Y, Qian X. Anal Chem; 2014 Feb 04; 86(3):1452-8. PubMed ID: 24447065 [Abstract] [Full Text] [Related]
3. Immobilization of trypsin onto Fe3O4@SiO2 -NH2 and study of its activity and stability. Aslani E, Abri A, Pazhang M. Colloids Surf B Biointerfaces; 2018 Oct 01; 170():553-562. PubMed ID: 29975903 [Abstract] [Full Text] [Related]
4. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. Jiang B, Yang K, Zhao Q, Wu Q, Liang Z, Zhang L, Peng X, Zhang Y. J Chromatogr A; 2012 Sep 07; 1254():8-13. PubMed ID: 22871380 [Abstract] [Full Text] [Related]
5. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification. Qin W, Song Z, Fan C, Zhang W, Cai Y, Zhang Y, Qian X. Anal Chem; 2012 Apr 03; 84(7):3138-44. PubMed ID: 22413971 [Abstract] [Full Text] [Related]
6. Novel superparamagnetic sanoparticles for trypsin immobilization and the application for efficient proteolysis. Sun J, Hu K, Liu Y, Pan Y, Yang Y. J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec 30; 942-943():9-14. PubMed ID: 24211332 [Abstract] [Full Text] [Related]
7. An aptamer-based trypsin reactor for on-line protein digestion with electrospray ionization tandem mass spectrometry. Xiao P, Lv X, Wang S, Iqbal J, Qing H, Li Q, Deng Y. Anal Biochem; 2013 Oct 15; 441(2):123-32. PubMed ID: 23831476 [Abstract] [Full Text] [Related]
8. Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Pečová M, Šebela M, Marková Z, Poláková K, Čuda J, Šafářová K, Zbořil R. Nanotechnology; 2013 Mar 29; 24(12):125102. PubMed ID: 23466477 [Abstract] [Full Text] [Related]
9. Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity. Hinterwirth H, Lindner W, Lämmerhofer M. Anal Chim Acta; 2012 Jul 06; 733():90-7. PubMed ID: 22704381 [Abstract] [Full Text] [Related]
10. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H, Yuan H, Liang Y, Xia S, Zhao Q, Wu Q, Zhang L, Liang Z, Zhang Y. J Chromatogr A; 2012 Jul 13; 1246():111-6. PubMed ID: 22446077 [Abstract] [Full Text] [Related]
11. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics. Shangguan L, Zhang L, Xiong Z, Ren J, Zhang R, Gao F, Zhang W. J Chromatogr A; 2015 Apr 03; 1388():158-66. PubMed ID: 25728656 [Abstract] [Full Text] [Related]
12. Hydrolysis of casein from different sources by immobilized trypsin on biochar: Effect of immobilization method. Souza Júnior EC, Santos MPF, Sampaio VS, Ferrão SPB, Fontan RCI, Bonomo RCF, Veloso CM. J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jun 01; 1146():122124. PubMed ID: 32361468 [Abstract] [Full Text] [Related]
13. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion. Yuan H, Zhang L, Zhang Y. J Chromatogr A; 2014 Dec 05; 1371():48-57. PubMed ID: 25456586 [Abstract] [Full Text] [Related]
14. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping. Bao H, Lui T, Zhang L, Chen G. Proteomics; 2009 Feb 05; 9(4):1114-7. PubMed ID: 19180540 [Abstract] [Full Text] [Related]
15. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. Li Y, Xu X, Deng C, Yang P, Zhang X. J Proteome Res; 2007 Sep 05; 6(9):3849-55. PubMed ID: 17676785 [Abstract] [Full Text] [Related]
16. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes. Wang B, Shangguan L, Wang S, Zhang L, Zhang W, Liu F. J Chromatogr A; 2016 Dec 16; 1477():22-29. PubMed ID: 27884426 [Abstract] [Full Text] [Related]
17. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Verma ML, Barrow CJ, Kennedy JF, Puri M. Int J Biol Macromol; 2012 Mar 01; 50(2):432-7. PubMed ID: 22230612 [Abstract] [Full Text] [Related]
18. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith. Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y. Proteomics; 2011 Mar 01; 11(5):991-5. PubMed ID: 21280225 [Abstract] [Full Text] [Related]
19. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Liu T, Wang S, Chen G. Talanta; 2009 Mar 15; 77(5):1767-73. PubMed ID: 19159796 [Abstract] [Full Text] [Related]