These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 25701421
1. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase. Tang SY, Yi P, Soffe R, Nahavandi S, Shukla R, Khoshmanesh K. Anal Bioanal Chem; 2015 May; 407(12):3437-48. PubMed ID: 25701421 [Abstract] [Full Text] [Related]
2. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device. Geng Y, Zhu Z, Wang Y, Wang Y, Ouyang S, Zheng K, Ye W, Fan Y, Wang Z, Pan D. Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494 [Abstract] [Full Text] [Related]
3. Study of antimycotic activity of lyticase. Sachivkina NP, Kravtsov EG, Vasilyeva EA, Anokhina IV, Dalin MV. Bull Exp Biol Med; 2009 Aug; 148(2):214-6. PubMed ID: 20027332 [Abstract] [Full Text] [Related]
4. Reorientation of microfluidic channel enables versatile dielectrophoretic platforms for cell manipulations. Tang SY, Zhang W, Yi P, Baratchi S, Kalantar-zadeh K, Khoshmanesh K. Electrophoresis; 2013 May; 34(9-10):1407-14. PubMed ID: 23463519 [Abstract] [Full Text] [Related]
5. Streamlined beta-galactosidase assay for analysis of recombinant yeast response to estrogens. Le Guével R, Pakdel F. Biotechniques; 2001 May; 30(5):1000-4. PubMed ID: 11355334 [Abstract] [Full Text] [Related]
6. Electroinduced release of recombinant β-galactosidase from Saccharomyces cerevisiae. Ganeva V, Stefanova D, Angelova B, Galutzov B, Velasco I, Arévalo-Rodríguez M. J Biotechnol; 2015 Oct 10; 211():12-9. PubMed ID: 26142064 [Abstract] [Full Text] [Related]
7. Differences in osmotolerant and cell-wall properties of two Zygosaccharomyces rouxii strains. Pribylová L, Farkas V, Slaninová I, de Montigny J, Sychrová H. Folia Microbiol (Praha); 2007 Oct 10; 52(3):241-5. PubMed ID: 17702462 [Abstract] [Full Text] [Related]
8. Spatial manipulation of cells and organelles using single electrode dielectrophoresis. Graham DM, Messerli MA, Pethig R. Biotechniques; 2012 Jan 10; 52(1):39-43. PubMed ID: 22229726 [Abstract] [Full Text] [Related]
9. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Bhattacharya S, Chao TC, Ariyasinghe N, Ruiz Y, Lake D, Ros R, Ros A. Anal Bioanal Chem; 2014 Mar 10; 406(7):1855-65. PubMed ID: 24408303 [Abstract] [Full Text] [Related]
10. Quantitation of fungal DNA contamination in commercial zymolyase and lyticase used in the preparation of fungi. Miyajima Y, Satoh K, Umeda Y, Makimura K. Nihon Ishinkin Gakkai Zasshi; 2009 Mar 10; 50(4):259-62. PubMed ID: 19942798 [Abstract] [Full Text] [Related]
11. Damaging effects of lyticase on Candida albicans and changes in the response of rat alveolar macrophages to the contact with yeast-like fungi. Morozov IA, Sachivkina NP, Kravtsov EG, Vasilyeva EA, Anokhina IV, Yashina NV, Dalin MV. Bull Exp Biol Med; 2011 Oct 10; 151(6):705-8. PubMed ID: 22485213 [Abstract] [Full Text] [Related]
12. Dielectrophoresis with 3D microelectrodes fabricated by surface tension assisted lithography. Nasabi M, Khoshmanesh K, Tovar-Lopez FJ, Kalantar-Zadeh K, Mitchell A. Electrophoresis; 2013 Dec 10; 34(22-23):3150-4. PubMed ID: 24347270 [Abstract] [Full Text] [Related]
13. Separation of viable and non-viable yeast using dielectrophoresis. Markx GH, Talary MS, Pethig R. J Biotechnol; 1994 Jan 15; 32(1):29-37. PubMed ID: 7764449 [Abstract] [Full Text] [Related]
14. Partial biochemical characterization of cell surface hydrophobicity and hydrophilicity of Candida albicans. Hazen KC, Lay JG, Hazen BW, Fu RC, Murthy S. Infect Immun; 1990 Nov 15; 58(11):3469-76. PubMed ID: 2228219 [Abstract] [Full Text] [Related]
15. Preparation and characterization of yeast nuclear extracts for efficient RNA polymerase B (II)-dependent transcription in vitro. Verdier JM, Stalder R, Roberge M, Amati B, Sentenac A, Gasser SM. Nucleic Acids Res; 1990 Dec 11; 18(23):7033-9. PubMed ID: 2263463 [Abstract] [Full Text] [Related]
17. Modifying dielectrophoretic response of nonviable yeast cells by ionic surfactant treatment. Tang SY, Zhang W, Baratchi S, Nasabi M, Kalantar-Zadeh K, Khoshmanesh K. Anal Chem; 2013 Jul 02; 85(13):6364-71. PubMed ID: 23724979 [Abstract] [Full Text] [Related]
18. An efficient technique for the isolation of yeast spores and the preparation of spheroplast lysates active in protein synthesis. Wolska-Mitaszko B, Jakubowicz T, Kucharzewska T, Gasior E. Anal Biochem; 1981 Sep 15; 116(2):241-7. PubMed ID: 7032354 [No Abstract] [Full Text] [Related]
19. Immobilization and ethanol stress induce the same molecular response at the level of the cell wall in growing yeast. Parascandola P, de Alteriis E, Sentandreu R, Zueco J. FEMS Microbiol Lett; 1997 May 01; 150(1):121-6. PubMed ID: 9163916 [Abstract] [Full Text] [Related]
20. [Separation and regeneration of protoplast from Phellinus igniarius]. Zhu ZP, Ma HL. Zhongguo Zhong Yao Za Zhi; 2007 Nov 01; 32(21):2232-5. PubMed ID: 18309661 [Abstract] [Full Text] [Related] Page: [Next] [New Search]