These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 25703825

  • 1. The differential expression of mgl mRNA by Porphyromonas gingivalis affects the production of methyl mercaptan.
    Ouhara K, Iwasaki Y, Kajiya M, Savitri IJ, Kitagawa M, Tokunaga N, Shintani T, Ogawa I, Hino T, Fujita T, Shiba H, Kurihara H.
    Oral Dis; 2015 Jul; 21(5):626-33. PubMed ID: 25703825
    [Abstract] [Full Text] [Related]

  • 2. Tea catechin EGCg suppresses the mgl gene associated with halitosis.
    Xu X, Zhou XD, Wu CD.
    J Dent Res; 2010 Nov; 89(11):1304-8. PubMed ID: 20858778
    [Abstract] [Full Text] [Related]

  • 3. Correlation between oral malodor and periodontal bacteria.
    Nakano Y, Yoshimura M, Koga T.
    Microbes Infect; 2002 May; 4(6):679-83. PubMed ID: 12048037
    [Abstract] [Full Text] [Related]

  • 4. Novel reuterin-related compounds suppress odour by periodontopathic bacteria.
    Fujiwara N, Murakami K, Nakao M, Toguchi M, Yumoto H, Amoh T, Hirota K, Matsuo T, Sano S, Ozaki K, Miyake Y.
    Oral Dis; 2017 May; 23(4):492-497. PubMed ID: 28083982
    [Abstract] [Full Text] [Related]

  • 5. Cetylpyridinium chloride suppresses gene expression associated with halitosis.
    Liu J, Ling JQ, Wu CD.
    Arch Oral Biol; 2013 Nov; 58(11):1686-91. PubMed ID: 24112735
    [Abstract] [Full Text] [Related]

  • 6. Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis.
    Yoshimura M, Nakano Y, Yamashita Y, Oho T, Saito T, Koga T.
    Infect Immun; 2000 Dec; 68(12):6912-6. PubMed ID: 11083813
    [Abstract] [Full Text] [Related]

  • 7. Methyl mercaptan production by periodontal bacteria.
    Nakano Y, Yoshimura M, Koga T.
    Int Dent J; 2002 Jun; 52 Suppl 3():217-20. PubMed ID: 12090456
    [Abstract] [Full Text] [Related]

  • 8. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation.
    Nakamura S, Shioya K, Hiraoka BY, Suzuki N, Hoshino T, Fujiwara T, Yoshinari N, Ansai T, Yoshida A.
    Microbiology (Reading); 2018 Apr; 164(4):529-539. PubMed ID: 29488863
    [Abstract] [Full Text] [Related]

  • 9. L-Methionine-gamma-lyase, as a target to inhibit malodorous bacterial growth by trifluoromethionine.
    Yoshimura M, Nakano Y, Koga T.
    Biochem Biophys Res Commun; 2002 Apr 12; 292(4):964-8. PubMed ID: 11944909
    [Abstract] [Full Text] [Related]

  • 10. The relationship between the presence of periodontopathogenic bacteria in saliva and halitosis.
    Awano S, Gohara K, Kurihara E, Ansai T, Takehara T.
    Int Dent J; 2002 Jun 12; 52 Suppl 3():212-6. PubMed ID: 12090455
    [Abstract] [Full Text] [Related]

  • 11. Inhibition of methionine gamma lyase deaminase and the growth of Porphyromonas gingivalis: A therapeutic target for halitosis/periodontitis.
    Kandalam U, Ledra N, Laubach H, Venkatachalam KV.
    Arch Oral Biol; 2018 Jun 12; 90():27-32. PubMed ID: 29525436
    [Abstract] [Full Text] [Related]

  • 12. Relationship between halitosis and periodontal disease - associated oral bacteria in tongue coatings.
    Amou T, Hinode D, Yoshioka M, Grenier D.
    Int J Dent Hyg; 2014 May 12; 12(2):145-51. PubMed ID: 23890391
    [Abstract] [Full Text] [Related]

  • 13. Contribution of periodontal pathogens on tongue dorsa analyzed with real-time PCR to oral malodor.
    Tanaka M, Yamamoto Y, Kuboniwa M, Nonaka A, Nishida N, Maeda K, Kataoka K, Nagata H, Shizukuishi S.
    Microbes Infect; 2004 Oct 12; 6(12):1078-83. PubMed ID: 15380777
    [Abstract] [Full Text] [Related]

  • 14. Association between oral malodour and periodontal disease-related parameters in the general population.
    Apatzidou AD, Bakirtzoglou E, Vouros I, Karagiannis V, Papa A, Konstantinidis A.
    Acta Odontol Scand; 2013 Jan 12; 71(1):189-95. PubMed ID: 22339235
    [Abstract] [Full Text] [Related]

  • 15. [Effect of spirochetes and porphyromonus gingivalis on oral malodor].
    Zhu WD, Sha YQ, Chen ZB.
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2003 May 12; 38(3):206-9. PubMed ID: 12887800
    [Abstract] [Full Text] [Related]

  • 16. Interspecies metabolite transfer fuels the methionine metabolism of Fusobacterium nucleatum to stimulate volatile methyl mercaptan production.
    Hara T, Sakanaka A, Lamont RJ, Amano A, Kuboniwa M.
    mSystems; 2024 Feb 20; 9(2):e0076423. PubMed ID: 38289043
    [Abstract] [Full Text] [Related]

  • 17. High production of methyl mercaptan by L-methionine-alpha-deamino-gamma-mercaptomethane lyase from Treponema denticola.
    Fukamachi H, Nakano Y, Okano S, Shibata Y, Abiko Y, Yamashita Y.
    Biochem Biophys Res Commun; 2005 May 27; 331(1):127-31. PubMed ID: 15845368
    [Abstract] [Full Text] [Related]

  • 18. Volatile sulfur compounds produced by Helicobacter pylori.
    Lee H, Kho HS, Chung JW, Chung SC, Kim YK.
    J Clin Gastroenterol; 2006 May 27; 40(5):421-6. PubMed ID: 16721224
    [Abstract] [Full Text] [Related]

  • 19. Effects of Streptococcus thermophilus on volatile sulfur compounds produced by Porphyromonas gingivalis.
    Lee SH, Baek DH.
    Arch Oral Biol; 2014 Nov 27; 59(11):1205-10. PubMed ID: 25105253
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.