These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 25707432
41. Identifying essential proteins from protein-protein interaction networks based on influence maximization. Xu W, Dong Y, Guan J, Zhou S. BMC Bioinformatics; 2022 Aug 16; 23(Suppl 8):339. PubMed ID: 35974329 [Abstract] [Full Text] [Related]
42. Identifying dynamic protein complexes based on gene expression profiles and PPI networks. Li M, Chen W, Wang J, Wu FX, Pan Y. Biomed Res Int; 2014 Aug 16; 2014():375262. PubMed ID: 24963481 [Abstract] [Full Text] [Related]
43. Modeling interactome: scale-free or geometric? Przulj N, Corneil DG, Jurisica I. Bioinformatics; 2004 Dec 12; 20(18):3508-15. PubMed ID: 15284103 [Abstract] [Full Text] [Related]
44. Centralities in simplicial complexes. Applications to protein interaction networks. Estrada E, Ross GJ. J Theor Biol; 2018 Feb 07; 438():46-60. PubMed ID: 29128505 [Abstract] [Full Text] [Related]
45. A Novel Core-Attachment-Based Method to Identify Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks. Xiao Q, Luo P, Li M, Wang J, Wu FX. Proteomics; 2019 Mar 07; 19(5):e1800129. PubMed ID: 30650262 [Abstract] [Full Text] [Related]
46. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins. Li G, Li M, Wang J, Li Y, Pan Y. IEEE/ACM Trans Comput Biol Bioinform; 2020 Mar 07; 17(4):1451-1458. PubMed ID: 30596582 [Abstract] [Full Text] [Related]
47. Integrating network topology, gene expression data and GO annotation information for protein complex prediction. Zhang W, Xu J, Li Y, Zou X. J Bioinform Comput Biol; 2019 Feb 07; 17(1):1950001. PubMed ID: 30803297 [Abstract] [Full Text] [Related]
48. Completing sparse and disconnected protein-protein network by deep learning. Huang L, Liao L, Wu CH. BMC Bioinformatics; 2018 Mar 22; 19(1):103. PubMed ID: 29566671 [Abstract] [Full Text] [Related]
49. Pairwise alignment of protein interaction networks. Koyutürk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A. J Comput Biol; 2006 Mar 22; 13(2):182-99. PubMed ID: 16597234 [Abstract] [Full Text] [Related]
50. Network simulation reveals significant contribution of network motifs to the age-dependency of yeast protein-protein interaction networks. Liang C, Luo J, Song D. Mol Biosyst; 2014 Jul 29; 10(9):2277-88. PubMed ID: 24964354 [Abstract] [Full Text] [Related]
51. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations. Li B, Liao B. Int J Mol Sci; 2017 Sep 06; 18(9):. PubMed ID: 28878201 [Abstract] [Full Text] [Related]
53. Influence of degree correlations on network structure and stability in protein-protein interaction networks. Friedel CC, Zimmer R. BMC Bioinformatics; 2007 Aug 09; 8():297. PubMed ID: 17688687 [Abstract] [Full Text] [Related]
54. An integrated method for identifying essential proteins from multiplex network model of protein-protein interactions. Athira K, Gopakumar G. J Bioinform Comput Biol; 2020 Aug 09; 18(4):2050020. PubMed ID: 32795133 [Abstract] [Full Text] [Related]
57. Prediction of essential proteins based on subcellular localization and gene expression correlation. Fan Y, Tang X, Hu X, Wu W, Ping Q. BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):470. PubMed ID: 29219067 [Abstract] [Full Text] [Related]
60. A deep learning framework for identifying essential proteins based on multiple biological information. Yue Y, Ye C, Peng PY, Zhai HX, Ahmad I, Xia C, Wu YZ, Zhang YH. BMC Bioinformatics; 2022 Aug 04; 23(1):318. PubMed ID: 35927611 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]