These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 25720164

  • 1. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].
    Li B, Pan H, Sun W, Cheng Y, Xie Z, Zhang J.
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1486-90. PubMed ID: 25720164
    [Abstract] [Full Text] [Related]

  • 2. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H.
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [Abstract] [Full Text] [Related]

  • 3. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J, Wu M, Lin J, Yang L.
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H.
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].
    Tan Z, Wang H, Wei Y, Li Y, Zhong C, Jia S.
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):76-82. PubMed ID: 24818481
    [Abstract] [Full Text] [Related]

  • 8. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U, Merfort M, Jeude M, Bringer-Meyer S, Sahm H.
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [Abstract] [Full Text] [Related]

  • 9. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.
    Sainz F, Navarro D, Mateo E, Torija MJ, Mas A.
    Int J Food Microbiol; 2016 Apr 02; 222():40-7. PubMed ID: 26848948
    [Abstract] [Full Text] [Related]

  • 10. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S.
    Microb Cell Fact; 2016 Jul 09; 15(1):121. PubMed ID: 27392695
    [Abstract] [Full Text] [Related]

  • 11. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans.
    Dai L, Jiang W, Jia R, Zhou X, Xu Y.
    Bioresour Technol; 2022 Mar 09; 348():126811. PubMed ID: 35131459
    [Abstract] [Full Text] [Related]

  • 12. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system.
    Ji A, Gao P.
    Appl Biochem Biotechnol; 2001 Jun 09; 94(3):213-23. PubMed ID: 11563824
    [Abstract] [Full Text] [Related]

  • 13. Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors.
    Anastassiadis S, Rehm HJ.
    Appl Microbiol Biotechnol; 2006 Dec 09; 73(3):541-8. PubMed ID: 16906404
    [Abstract] [Full Text] [Related]

  • 14. Efficient biosynthesis of 2-keto-D-gluconic acid by fed-batch culture of metabolically engineered Gluconobacter japonicus.
    Zeng W, Cai W, Liu L, Du G, Chen J, Zhou J.
    Synth Syst Biotechnol; 2019 Sep 09; 4(3):134-141. PubMed ID: 31384676
    [Abstract] [Full Text] [Related]

  • 15. Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells.
    Lian Z, Dai L, Zhang R, Liu Y, Zhou X, Xu Y.
    Bioprocess Biosyst Eng; 2022 Nov 09; 45(11):1849-1855. PubMed ID: 36149483
    [Abstract] [Full Text] [Related]

  • 16. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.
    Zhang H, Liu G, Zhang J, Bao J.
    Bioresour Technol; 2016 Nov 09; 219():123-131. PubMed ID: 27484668
    [Abstract] [Full Text] [Related]

  • 17. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile.
    Silberbach M, Maier B, Zimmermann M, Büchs J.
    Appl Microbiol Biotechnol; 2003 Jul 09; 62(1):92-8. PubMed ID: 12835926
    [Abstract] [Full Text] [Related]

  • 18. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production.
    Wei G, Yang X, Gan T, Zhou W, Lin J, Wei D.
    J Ind Microbiol Biotechnol; 2009 Aug 09; 36(8):1029-34. PubMed ID: 19434434
    [Abstract] [Full Text] [Related]

  • 19. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L, Li K, Zhang H, Liu X, Lin J, Wei D.
    J Biotechnol; 2014 Apr 10; 175():69-74. PubMed ID: 24530540
    [Abstract] [Full Text] [Related]

  • 20. High-yield production of 5-keto-D-gluconic acid via regulated fermentation strategy of Gluconobacter oxydans and its conversion to L-(+)-tartaric acid.
    Sheng Z, Li Y, Wang J.
    Heliyon; 2024 Sep 15; 10(17):e36527. PubMed ID: 39281443
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.