These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
230 related items for PubMed ID: 25721671
1. 1α,25 dihydroxi-vitamin D₃ modulates CDK4 and CDK6 expression and localization. Irazoqui AP, Heim NB, Boland RL, Buitrago CG. Biochem Biophys Res Commun; 2015 Mar 27; 459(1):137-42. PubMed ID: 25721671 [Abstract] [Full Text] [Related]
2. Actions of 1,25(OH)2-vitamin D3 on the cellular cycle depend on VDR and p38 MAPK in skeletal muscle cells. Irazoqui AP, Boland RL, Buitrago CG. J Mol Endocrinol; 2014 Dec 27; 53(3):331-43. PubMed ID: 25316911 [Abstract] [Full Text] [Related]
3. Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. Buitrago C, Pardo VG, Boland R. J Steroid Biochem Mol Biol; 2013 Jul 27; 136():125-30. PubMed ID: 23470620 [Abstract] [Full Text] [Related]
5. Caveolae and caveolin-1 are implicated in 1alpha,25(OH)2-vitamin D3-dependent modulation of Src, MAPK cascades and VDR localization in skeletal muscle cells. Buitrago C, Boland R. J Steroid Biochem Mol Biol; 2010 Jul 27; 121(1-2):169-75. PubMed ID: 20211253 [Abstract] [Full Text] [Related]
6. Activation of MAPKs by 1alpha,25(OH)2-Vitamin D3 and 17beta-estradiol in skeletal muscle cells leads to phosphorylation of Elk-1 and CREB transcription factors. Ronda AC, Buitrago C, Colicheo A, de Boland AR, Roldán E, Boland R. J Steroid Biochem Mol Biol; 2007 Mar 27; 103(3-5):462-6. PubMed ID: 17197172 [Abstract] [Full Text] [Related]
7. MAP kinases p38 and JNK are activated by the steroid hormone 1alpha,25(OH)2-vitamin D3 in the C2C12 muscle cell line. Buitrago CG, Ronda AC, de Boland AR, Boland R. J Cell Biochem; 2006 Mar 01; 97(4):698-708. PubMed ID: 16215981 [Abstract] [Full Text] [Related]
8. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer. Yu SY, Liao CH, Chien MH, Tsai TY, Lin JK, Weng MS. J Agric Food Chem; 2014 Mar 05; 62(9):2085-95. PubMed ID: 24533688 [Abstract] [Full Text] [Related]
9. Effects of calcitriol on the cell cycle of rhabdomyosarcoma cells. Irazoqui AP, Gonzalez A, Buitrago C. J Steroid Biochem Mol Biol; 2022 Sep 05; 222():106146. PubMed ID: 35710090 [Abstract] [Full Text] [Related]
10. Involvement of ERK1/2, p38 MAPK, and PI3K/Akt signaling pathways in the regulation of cell cycle progression by PTHrP in colon adenocarcinoma cells. Calvo N, Martín MJ, de Boland AR, Gentili C. Biochem Cell Biol; 2014 Aug 05; 92(4):305-15. PubMed ID: 25051885 [Abstract] [Full Text] [Related]
11. 1alpha,25-Dihydroxyvitamin D(3) antiproliferative actions involve vitamin D receptor-mediated activation of MAPK pathways and AP-1/p21(waf1) upregulation in human osteosarcoma. Wu W, Zhang X, Zanello LP. Cancer Lett; 2007 Aug 28; 254(1):75-86. PubMed ID: 17412493 [Abstract] [Full Text] [Related]
12. 1α,25-Dihydroxyvitamin D₃ inhibits the human H295R cell proliferation by cell cycle arrest: a model for a protective role of vitamin D receptor against adrenocortical cancer. Pilon C, Urbanet R, Williams TA, Maekawa T, Vettore S, Sirianni R, Pezzi V, Mulatero P, Fassina A, Sasano H, Fallo F. J Steroid Biochem Mol Biol; 2014 Mar 28; 140():26-33. PubMed ID: 24269839 [Abstract] [Full Text] [Related]
13. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. Mol Endocrinol; 2004 Nov 28; 18(11):2660-71. PubMed ID: 15272054 [Abstract] [Full Text] [Related]
14. The vitamin D receptor mediates rapid changes in muscle protein tyrosine phosphorylation induced by 1,25(OH)(2)D(3). Buitrago C, Vazquez G, De Boland AR, Boland R. Biochem Biophys Res Commun; 2001 Dec 21; 289(5):1150-6. PubMed ID: 11741312 [Abstract] [Full Text] [Related]
15. 1alpha,25(OH)(2)-Vitamin D(3) stimulates intestinal cell p38 MAPK activity and increases c-Fos expression. Pardo VG, Boland R, de Boland AR. Int J Biochem Cell Biol; 2006 Dec 21; 38(7):1181-90. PubMed ID: 16483831 [Abstract] [Full Text] [Related]
16. Short-chain fatty acids and colon cancer cells: the vitamin D receptor--butyrate connection. Gaschott T, Stein J. Recent Results Cancer Res; 2003 Dec 21; 164():247-57. PubMed ID: 12899527 [Abstract] [Full Text] [Related]
17. Resistance to 1,25D-induced differentiation in human acute myeloid leukemia HL60-40AF cells is associated with reduced transcriptional activity and nuclear localization of the vitamin D receptor. Garay E, Donnelly R, Wang X, Studzinski GP. J Cell Physiol; 2007 Dec 21; 213(3):816-25. PubMed ID: 17520689 [Abstract] [Full Text] [Related]
18. Antitumor effects of two less-calcemic vitamin D analogs (Paricalcitol and QW-1624F2-2) in squamous cell carcinoma cells. Alagbala AA, Johnson CS, Trump DL, Posner GH, Foster BA. Oncology; 2006 Dec 21; 70(6):483-92. PubMed ID: 17237623 [Abstract] [Full Text] [Related]
19. Modulation of vascular smooth muscle cell growth by magnesium-role of mitogen-activated protein kinases. Touyz RM, Yao G. J Cell Physiol; 2003 Dec 21; 197(3):326-35. PubMed ID: 14566962 [Abstract] [Full Text] [Related]
20. Interaction of retinoblastoma protein and D cyclins during cell-growth inhibition by hexamethylenebisacetamide in TM2H mouse epithelial cells. Said TK, Medina D. Mol Carcinog; 1998 Jun 21; 22(2):128-43. PubMed ID: 9655257 [Abstract] [Full Text] [Related] Page: [Next] [New Search]