These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 25733610
1. The Bacillus subtilis tyrZ gene encodes a highly selective tyrosyl-tRNA synthetase and is regulated by a MarR regulator and T box riboswitch. Williams-Wagner RN, Grundy FJ, Raina M, Ibba M, Henkin TM. J Bacteriol; 2015 May; 197(9):1624-31. PubMed ID: 25733610 [Abstract] [Full Text] [Related]
2. Identification and characterization of mutations conferring resistance to D-amino acids in Bacillus subtilis. Leiman SA, Richardson C, Foulston L, Elsholz AK, First EA, Losick R. J Bacteriol; 2015 May; 197(9):1632-9. PubMed ID: 25733611 [Abstract] [Full Text] [Related]
3. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. Henkin TM, Glass BL, Grundy FJ. J Bacteriol; 1992 Feb; 174(4):1299-306. PubMed ID: 1735721 [Abstract] [Full Text] [Related]
6. Thiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli. Salazar O, Sagredo B, Jedlicki E, Söll D, Weygand-Durasevic I, Orellana O. J Bacteriol; 1994 Jul; 176(14):4409-15. PubMed ID: 7517395 [Abstract] [Full Text] [Related]
9. The Dual Role of the 2'-OH Group of A76 tRNATyr in the Prevention of d-tyrosine Mistranslation. Rybak MY, Kovalenko OP, Tukalo MA. J Mol Biol; 2018 Aug 17; 430(17):2670-2676. PubMed ID: 29953888 [Abstract] [Full Text] [Related]
10. Analysis of cis-acting sequence and structural elements required for antitermination of the Bacillus subtilis tyrS gene. Rollins SM, Grundy FJ, Henkin TM. Mol Microbiol; 1997 Jul 17; 25(2):411-21. PubMed ID: 9282752 [Abstract] [Full Text] [Related]
11. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain. Richardson CJ, First EA. Biochemistry; 2016 Mar 15; 55(10):1541-53. PubMed ID: 26890980 [Abstract] [Full Text] [Related]
12. Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. Soutourina J, Plateau P, Blanquet S. J Biol Chem; 2000 Oct 20; 275(42):32535-42. PubMed ID: 10918062 [Abstract] [Full Text] [Related]
13. Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. Wang J, Nikonowicz EP. J Mol Biol; 2011 Apr 22; 408(1):99-117. PubMed ID: 21333656 [Abstract] [Full Text] [Related]
14. An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism. Suddala KC, Zhang J. IUBMB Life; 2019 Aug 22; 71(8):1167-1180. PubMed ID: 31206978 [Abstract] [Full Text] [Related]
17. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine. Sheoran A, Sharma G, First EA. J Biol Chem; 2008 May 09; 283(19):12960-70. PubMed ID: 18319247 [Abstract] [Full Text] [Related]
19. Stabilization of the transition state for the transfer of tyrosine to tRNA(Tyr) by tyrosyl-tRNA synthetase. Xin Y, Li W, First EA. J Mol Biol; 2000 Oct 20; 303(2):299-310. PubMed ID: 11023794 [Abstract] [Full Text] [Related]
20. Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene. Luo D, Leautey J, Grunberg-Manago M, Putzer H. J Bacteriol; 1997 Apr 20; 179(8):2472-8. PubMed ID: 9098041 [Abstract] [Full Text] [Related] Page: [Next] [New Search]