These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 25746476

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Synthesis of Formate from CO2 Gas Catalyzed by an O2-Tolerant NAD-Dependent Formate Dehydrogenase and Glucose Dehydrogenase.
    Yu X, Niks D, Ge X, Liu H, Hille R, Mulchandani A.
    Biochemistry; 2019 Apr 09; 58(14):1861-1868. PubMed ID: 30839197
    [Abstract] [Full Text] [Related]

  • 6. A continuous system for biocatalytic hydrogenation of CO2 to formate.
    Mourato C, Martins M, da Silva SM, Pereira IAC.
    Bioresour Technol; 2017 Jul 09; 235():149-156. PubMed ID: 28365342
    [Abstract] [Full Text] [Related]

  • 7. Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts.
    Alissandratos A, Kim HK, Easton CJ.
    Bioresour Technol; 2014 Jul 09; 164():7-11. PubMed ID: 24814397
    [Abstract] [Full Text] [Related]

  • 8. Selective formate production from H2 and CO2 using encapsulated whole-cells under mild reaction conditions.
    Nguyen HK, Minato T, Moniruzzaman M, Kiyasu Y, Ogo S, Yoon KS.
    J Biosci Bioeng; 2023 Sep 09; 136(3):182-189. PubMed ID: 37400329
    [Abstract] [Full Text] [Related]

  • 9. Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy.
    Chistoserdova L, Crowther GJ, Vorholt JA, Skovran E, Portais JC, Lidstrom ME.
    J Bacteriol; 2007 Dec 09; 189(24):9076-81. PubMed ID: 17921299
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas.
    Choe H, Joo JC, Cho DH, Kim MH, Lee SH, Jung KD, Kim YH.
    PLoS One; 2014 Dec 09; 9(7):e103111. PubMed ID: 25061666
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T, Leimkühler S.
    FEBS J; 2013 Dec 09; 280(23):6083-96. PubMed ID: 24034888
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO2.
    Chen Y, Li P, Noh H, Kung CW, Buru CT, Wang X, Zhang X, Farha OK.
    Angew Chem Int Ed Engl; 2019 Jun 03; 58(23):7682-7686. PubMed ID: 30913356
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.