These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 25746793
1. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. Chen Q, Zhang L, de Crombrugghe B, Krahe R. FASEB J; 2015 Jun; 29(6):2555-65. PubMed ID: 25746793 [Abstract] [Full Text] [Related]
2. Mesenchymal Deletion of Histone Demethylase NO66 in Mice Promotes Bone Formation. Chen Q, Sinha K, Deng JM, Yasuda H, Krahe R, Behringer RR, de Crombrugghe B. J Bone Miner Res; 2015 Sep; 30(9):1608-17. PubMed ID: 25736226 [Abstract] [Full Text] [Related]
4. Osterix and NO66 histone demethylase control the chromatin of Osterix target genes during osteoblast differentiation. Sinha KM, Yasuda H, Zhou X, deCrombrugghe B. J Bone Miner Res; 2014 Apr; 29(4):855-65. PubMed ID: 24115157 [Abstract] [Full Text] [Related]
5. Ets transcription factors and targets in osteogenesis. Raouf A, Seth A. Oncogene; 2000 Dec 18; 19(55):6455-63. PubMed ID: 11175361 [Abstract] [Full Text] [Related]
6. Osteoblast-Specific Overexpression of Nucleolar Protein NO66/RIOX1 in Mouse Embryos Leads to Osteoporosis in Adult Mice. Chen Q, Sinha KM, de Crombrugghe B, Krahe R. J Osteoporos; 2023 Dec 18; 2023():8998556. PubMed ID: 36660551 [Abstract] [Full Text] [Related]
7. Cbfβ deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbfβ required for skeletal development. Chen W, Ma J, Zhu G, Jules J, Wu M, McConnell M, Tian F, Paulson C, Zhou X, Wang L, Li YP. Proc Natl Acad Sci U S A; 2014 Jun 10; 111(23):8482-7. PubMed ID: 24850862 [Abstract] [Full Text] [Related]
8. β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. Liu B, Wu S, Han L, Zhang C. Int J Mol Med; 2015 Dec 10; 36(6):1572-82. PubMed ID: 26496941 [Abstract] [Full Text] [Related]
9. IGF-I Signaling in Osterix-Expressing Cells Regulates Secondary Ossification Center Formation, Growth Plate Maturation, and Metaphyseal Formation During Postnatal Bone Development. Wang Y, Menendez A, Fong C, ElAlieh HZ, Kubota T, Long R, Bikle DD. J Bone Miner Res; 2015 Dec 10; 30(12):2239-48. PubMed ID: 26011431 [Abstract] [Full Text] [Related]
10. Structural insights into histone demethylase NO66 in interaction with osteoblast-specific transcription factor osterix and gene repression. Tao Y, Wu M, Zhou X, Yin W, Hu B, de Crombrugghe B, Sinha KM, Zang J. J Biol Chem; 2013 Jun 07; 288(23):16430-16437. PubMed ID: 23620590 [Abstract] [Full Text] [Related]
11. Bone morphogenetic protein regulation of forkhead/winged helix transcription factor Foxc2 (Mfh1) in a murine mesodermal cell line C1 and in skeletal precursor cells. Nifuji A, Miura N, Kato N, Kellermann O, Noda M. J Bone Miner Res; 2001 Oct 07; 16(10):1765-71. PubMed ID: 11585339 [Abstract] [Full Text] [Related]
12. Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. Nakanishi R, Akiyama H, Kimura H, Otsuki B, Shimizu M, Tsuboyama T, Nakamura T. J Bone Miner Res; 2008 Feb 07; 23(2):271-7. PubMed ID: 17907918 [Abstract] [Full Text] [Related]
13. Conditional Deletion of Indian Hedgehog in Limb Mesenchyme Results in Complete Loss of Growth Plate Formation but Allows Mature Osteoblast Differentiation. Amano K, Densmore MJ, Lanske B. J Bone Miner Res; 2015 Dec 07; 30(12):2262-72. PubMed ID: 26094741 [Abstract] [Full Text] [Related]
14. Genetic analysis of Runx2 function during intramembranous ossification. Takarada T, Nakazato R, Tsuchikane A, Fujikawa K, Iezaki T, Yoneda Y, Hinoi E. Development; 2016 Jan 15; 143(2):211-8. PubMed ID: 26657773 [Abstract] [Full Text] [Related]
15. Runx2, a multifunctional transcription factor in skeletal development. Komori T. J Cell Biochem; 2002 Jan 15; 87(1):1-8. PubMed ID: 12210716 [Abstract] [Full Text] [Related]
16. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. Dailey L, Laplantine E, Priore R, Basilico C. J Cell Biol; 2003 Jun 23; 161(6):1053-66. PubMed ID: 12821644 [Abstract] [Full Text] [Related]
17. Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCdelta and STAT3. Chipoy C, Berreur M, Couillaud S, Pradal G, Vallette F, Colombeix C, Rédini F, Heymann D, Blanchard F. J Bone Miner Res; 2004 Nov 23; 19(11):1850-61. PubMed ID: 15476586 [Abstract] [Full Text] [Related]
18. Differential gene expression by Osterix knockdown in mouse chondrogenic ATDC5 cells. Park SY, Kim JE. Gene; 2013 Apr 15; 518(2):368-75. PubMed ID: 23337593 [Abstract] [Full Text] [Related]
19. Molecular signaling at the fusion stage of the mouse mandibular arch: involvement of insulin-like growth factor family. Fujita K, Taya Y, Shimazu Y, Aoba T, Soeno Y. Int J Dev Biol; 2013 Apr 15; 57(5):399-406. PubMed ID: 23584732 [Abstract] [Full Text] [Related]
20. Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. Wang Y, Belflower RM, Dong YF, Schwarz EM, O'Keefe RJ, Drissi H. J Bone Miner Res; 2005 Sep 15; 20(9):1624-36. PubMed ID: 16059634 [Abstract] [Full Text] [Related] Page: [Next] [New Search]