These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. Sheikh-Assadi M, Khandan-Mirkohi A, Alemardan A, Moreno-Jiménez E. Int J Phytoremediation; 2015; 17(1-6):556-62. PubMed ID: 25747242 [Abstract] [Full Text] [Related]
29. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA. Chemosphere; 2009 Sep; 77(2):273-8. PubMed ID: 19692112 [Abstract] [Full Text] [Related]
30. Integrated approaches for heavy metal-contaminated soil remediation: harnessing the potential of Paulownia elongata S. Y. Hu, Oscillatoria sp., arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices), and iron nanoparticles. Khoshyomn S, Heidari A, Farzam M, Shariatmadari Z, Karimian Z. Environ Sci Pollut Res Int; 2024 Mar; 31(13):19595-19614. PubMed ID: 38366318 [Abstract] [Full Text] [Related]
31. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Janousková M, Pavlíková D, Vosátka M. Chemosphere; 2006 Dec; 65(11):1959-65. PubMed ID: 16905176 [Abstract] [Full Text] [Related]
32. Changes in microRNAs expression of flax (Linum usitatissimum L.) planted in a cadmium-contaminated soil following the inoculation with root symbiotic fungi. Jamili S, Zalaghi R, Mehdi Khanlou K. Int J Phytoremediation; 2024 Jun; 26(8):1221-1230. PubMed ID: 38279665 [Abstract] [Full Text] [Related]
33. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M. Tree Physiol; 2010 Oct; 30(10):1311-9. PubMed ID: 20688880 [Abstract] [Full Text] [Related]
34. Serratia sp. CP-13 augments the growth of cadmium (Cd)-stressed Linum usitatissimum L. by limited Cd uptake, enhanced nutrient acquisition and antioxidative potential. Shahid M, Javed MT, Masood S, Akram MS, Azeem M, Ali Q, Gilani R, Basit F, Abid A, Lindberg S. J Appl Microbiol; 2019 Jun; 126(6):1708-1721. PubMed ID: 30882965 [Abstract] [Full Text] [Related]
35. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. de Andrade SA, da Silveira AP, Jorge RA, de Abreu MF. Int J Phytoremediation; 2008 Jun; 10(1):1-13. PubMed ID: 18709928 [Abstract] [Full Text] [Related]
36. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Wang FY, Lin XG, Yin R. Int J Phytoremediation; 2007 Jun; 9(4):345-53. PubMed ID: 18246710 [Abstract] [Full Text] [Related]
37. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. González-Chávez MD, Carrillo-González R, Hernández Godínez MI, Evangelista Lozano S. Int J Phytoremediation; 2017 Feb; 19(2):174-182. PubMed ID: 27408989 [Abstract] [Full Text] [Related]
38. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Selvaraj A, Thangavel K, Uthandi S. Microbiol Res; 2020 Jan; 231():126355. PubMed ID: 31704544 [Abstract] [Full Text] [Related]
39. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Tank N, Saraf M. J Basic Microbiol; 2009 Apr; 49(2):195-204. PubMed ID: 18798171 [Abstract] [Full Text] [Related]
40. Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Marques AP, Oliveira RS, Samardjieva KA, Pissarra J, Rangel AO, Castro PM. Environ Pollut; 2007 Feb; 145(3):691-9. PubMed ID: 16905229 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]