These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 25764374
1. Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. Khlebtsov BN, Khanadeev VA, Panfilova EV, Bratashov DN, Khlebtsov NG. ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6518-29. PubMed ID: 25764374 [Abstract] [Full Text] [Related]
2. In situ seed-growth synthesis of silver nanoplates on glass for the detection of food contaminants by surface enhanced Raman scattering. D'Agostino A, Giovannozzi AM, Mandrile L, Sacco A, Rossi AM, Taglietti A. Talanta; 2020 Aug 15; 216():120936. PubMed ID: 32456888 [Abstract] [Full Text] [Related]
3. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y, Wang Y, Liu A, Liu S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep 05; 297():122721. PubMed ID: 37054572 [Abstract] [Full Text] [Related]
4. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Hussain N, Pu H, Sun DW. Food Chem; 2021 Jul 15; 350():129025. PubMed ID: 33609938 [Abstract] [Full Text] [Related]
5. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate. Xiao L, Feng S, Hua MZ, Lu X. Talanta; 2023 Mar 01; 254():124128. PubMed ID: 36462280 [Abstract] [Full Text] [Related]
6. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram. Zhu J, Liu MJ, Li JJ, Li X, Zhao JW. Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan 15; 189():586-593. PubMed ID: 28881284 [Abstract] [Full Text] [Related]
7. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Pu H, Huang Z, Xu F, Sun DW. Food Chem; 2021 May 01; 343():128548. PubMed ID: 33221103 [Abstract] [Full Text] [Related]
8. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Wang K, Sun DW, Pu H, Wei Q. Food Chem; 2020 Apr 25; 310():125923. PubMed ID: 31837530 [Abstract] [Full Text] [Related]
9. Ag nanocubes monolayer-modified PDMS as flexible SERS substrates for pesticides sensing. Xia D, Jiang P, Cai Z, Zhou R, Tu B, Gao N, Chang G, He H, He Y. Mikrochim Acta; 2022 May 25; 189(6):232. PubMed ID: 35614151 [Abstract] [Full Text] [Related]
10. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering. Wu J, Huang Y, Miao J, Lai K. J Sci Food Agric; 2022 Nov 25; 102(14):6211-6219. PubMed ID: 35478166 [Abstract] [Full Text] [Related]
11. Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue. Chen M, Luo W, Liu Q, Hao N, Zhu Y, Liu M, Wang L, Yang H, Chen X. Anal Chem; 2018 Nov 20; 90(22):13647-13654. PubMed ID: 30379069 [Abstract] [Full Text] [Related]
12. Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres. Niu C, Zou B, Wang Y, Cheng L, Zheng H, Zhou S. Langmuir; 2016 Jan 26; 32(3):858-63. PubMed ID: 26731200 [Abstract] [Full Text] [Related]
13. Green and sustainable self-cleaning flexible SERS base: Utilized for cyclic-detection of residues on apple surface. Chen Z, Sun Y, Zhang X, Shen Y, Khalifa SAM, Huang X, Shi J, Li Z, Zou X. Food Chem; 2024 May 30; 441():138345. PubMed ID: 38185049 [Abstract] [Full Text] [Related]
14. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Sun L, Yu Z, Lin M. Analyst; 2019 Aug 05; 144(16):4820-4825. PubMed ID: 31282496 [Abstract] [Full Text] [Related]
15. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram. Silva de Almeida F, Bussler L, Marcio Lima S, Fiorucci AR, da Cunha Andrade LH. Appl Spectrosc; 2016 Jul 05; 70(7):1157-64. PubMed ID: 27279502 [Abstract] [Full Text] [Related]
16. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Asgari S, Sun L, Lin J, Weng Z, Wu G, Zhang Y, Lin M. Mikrochim Acta; 2020 Jun 16; 187(7):390. PubMed ID: 32548791 [Abstract] [Full Text] [Related]
17. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Alyami A, Quinn AJ, Iacopino D. Talanta; 2019 Aug 15; 201():58-64. PubMed ID: 31122461 [Abstract] [Full Text] [Related]
18. Mechanistic understanding of nanoparticle interactions to achieve highly-ordered arrays through self-assembly for sensitive surface-enhanced Raman scattering detection of trace thiram. Lin G, Zhou X, Lijie L. Food Chem; 2024 Oct 15; 455():139852. PubMed ID: 38823142 [Abstract] [Full Text] [Related]
19. Rapid detection of ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles. Hussain N, Pu H, Hussain A, Sun DW. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug 05; 236():118357. PubMed ID: 32375074 [Abstract] [Full Text] [Related]
20. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M, Chen T, Liu Y, Zhang J, Sun H, Yang J, Zhu J, Liu J, Wu Y. ACS Sens; 2018 Nov 26; 3(11):2446-2454. PubMed ID: 30335972 [Abstract] [Full Text] [Related] Page: [Next] [New Search]