These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


913 related items for PubMed ID: 25765008

  • 1. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 2. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 3. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Jul; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 4. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y, Lin H, Yang Z, Wang J, Li Y, Xu B.
    IEEE/ACM Trans Comput Biol Bioinform; 2013 Jul; 10(3):729-41. PubMed ID: 24091405
    [Abstract] [Full Text] [Related]

  • 5. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs.
    Vlasblom J, Wodak SJ.
    BMC Bioinformatics; 2009 Mar 30; 10():99. PubMed ID: 19331680
    [Abstract] [Full Text] [Related]

  • 6. Joint clustering of protein interaction networks through Markov random walk.
    Wang Y, Qian X.
    BMC Syst Biol; 2014 Mar 30; 8 Suppl 1(Suppl 1):S9. PubMed ID: 24565376
    [Abstract] [Full Text] [Related]

  • 7. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B, Luo J, Liang C, Wang S, Song D.
    Comput Biol Chem; 2015 Oct 30; 58():173-81. PubMed ID: 26298638
    [Abstract] [Full Text] [Related]

  • 8. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J.
    PLoS One; 2017 Oct 30; 12(9):e0183460. PubMed ID: 28937982
    [Abstract] [Full Text] [Related]

  • 9. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L, Gao L, Li K, Zhao Y, Chiu DK.
    Comput Biol Chem; 2011 Oct 12; 35(5):298-307. PubMed ID: 22000801
    [Abstract] [Full Text] [Related]

  • 10. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S, Ning K, Leong HW.
    BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868
    [Abstract] [Full Text] [Related]

  • 11. Evaluation of clustering algorithms for protein-protein interaction networks.
    Brohée S, van Helden J.
    BMC Bioinformatics; 2006 Nov 06; 7():488. PubMed ID: 17087821
    [Abstract] [Full Text] [Related]

  • 12. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 13. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach.
    Mukhopadhyay A, Ray S, De M.
    Mol Biosyst; 2012 Nov 01; 8(11):3036-48. PubMed ID: 22990765
    [Abstract] [Full Text] [Related]

  • 14. An effective approach to detecting both small and large complexes from protein-protein interaction networks.
    Xu B, Wang Y, Wang Z, Zhou J, Zhou S, Guan J.
    BMC Bioinformatics; 2017 Oct 16; 18(Suppl 12):419. PubMed ID: 29072136
    [Abstract] [Full Text] [Related]

  • 15. Evolutionary Graph Clustering for Protein Complex Identification.
    He T, Chan KCC.
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Oct 16; 15(3):892-904. PubMed ID: 28029628
    [Abstract] [Full Text] [Related]

  • 16. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.
    Peng W, Wang J, Zhao B, Wang L.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Oct 16; 12(1):179-92. PubMed ID: 26357088
    [Abstract] [Full Text] [Related]

  • 17. Integrating experimental and literature protein-protein interaction data for protein complex prediction.
    Zhang Y, Lin H, Yang Z, Wang J.
    BMC Genomics; 2015 Oct 16; 16 Suppl 2(Suppl 2):S4. PubMed ID: 25708571
    [Abstract] [Full Text] [Related]

  • 18. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.
    Manikandan P, Ramyachitra D, Banupriya D.
    Gene; 2016 Apr 15; 580(2):144-158. PubMed ID: 26809099
    [Abstract] [Full Text] [Related]

  • 19. Exploiting multi-layered information to iteratively predict protein functions.
    Zhu W, Hou J, Chen YP.
    Math Biosci; 2012 Apr 15; 236(2):108-16. PubMed ID: 22391459
    [Abstract] [Full Text] [Related]

  • 20. Survey: Enhancing protein complex prediction in PPI networks with GO similarity weighting.
    Price T, Peña FI, Cho YR.
    Interdiscip Sci; 2013 Sep 15; 5(3):196-210. PubMed ID: 24307411
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 46.