These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys. Liu N, Ma T, Liao C, Liu G, Mota RMO, Liu J, Sohn S, Kube S, Zhao S, Singer JP, Schroers J. Sci Rep; 2021 Feb 16; 11(1):3903. PubMed ID: 33594154 [Abstract] [Full Text] [Related]
27. Proposed long-range empirical potential to study the metallic glasses in the Ni-Nb-Ta system. Dai Y, Li JH, Che XL, Liu BX. J Phys Chem B; 2009 May 21; 113(20):7282-90. PubMed ID: 19438281 [Abstract] [Full Text] [Related]
28. Fatigue and corrosion of a Pd-based bulk metallic glass in various environments. Watanabe LY, Roberts SN, Baca N, Wiest A, Garrett SJ, Conner RD. Mater Sci Eng C Mater Biol Appl; 2013 Oct 21; 33(7):4021-5. PubMed ID: 23910309 [Abstract] [Full Text] [Related]
29. Atomistic modeling to optimize composition and characterize structure of Ni-Zr-Mo metallic glasses. Yang MH, Li SN, Li Y, Li JH, Liu BX. Phys Chem Chem Phys; 2015 May 28; 17(20):13355-65. PubMed ID: 25923843 [Abstract] [Full Text] [Related]
30. Connectivity and free-surface effects in polymer glasses. Lappala A, Sefton L, Fenimore PW, Terentjev EM. Sci Rep; 2019 Mar 07; 9(1):3830. PubMed ID: 30846731 [Abstract] [Full Text] [Related]
31. Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation theory. Sato Y, Nakai C, Wakeda M, Ogata S. Sci Rep; 2017 Aug 03; 7(1):7194. PubMed ID: 28775268 [Abstract] [Full Text] [Related]
32. Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition. Ding H, Luan H, Bu H, Xu H, Yao K. Materials (Basel); 2022 Feb 23; 15(5):. PubMed ID: 35268898 [Abstract] [Full Text] [Related]
33. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses. Das S, Choudhary K, Chernatynskiy A, Choi Yim H, Bandyopadhyay AK, Mukherjee S. J Phys Condens Matter; 2016 Jun 02; 28(21):216003. PubMed ID: 27143686 [Abstract] [Full Text] [Related]
34. Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses. Ghorbani A, Askari A, Malekan M, Nili-Ahmadabadi M. Sci Rep; 2022 Jul 11; 12(1):11754. PubMed ID: 35817887 [Abstract] [Full Text] [Related]
35. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability. Sun YT, Bai HY, Li MZ, Wang WH. J Phys Chem Lett; 2017 Jul 20; 8(14):3434-3439. PubMed ID: 28697303 [Abstract] [Full Text] [Related]
36. Polyamorphism in a metallic glass. Sheng HW, Liu HZ, Cheng YQ, Wen J, Lee PL, Luo WK, Shastri SD, Ma E. Nat Mater; 2007 Mar 20; 6(3):192-7. PubMed ID: 17310140 [Abstract] [Full Text] [Related]
37. Atomic-Approach to Predict the Energetically Favored Composition Region and to Characterize the Short-, Medium-, and Extended-Range Structures of the Ti-Nb-Al Ternary Metallic Glasses. Cai B, Liu J, Li J, Yang M, Liu B. Materials (Basel); 2019 Jan 31; 12(3):. PubMed ID: 30708955 [Abstract] [Full Text] [Related]