These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


656 related items for PubMed ID: 25772393

  • 1. Improving the tuberculosis drug development pipeline.
    Evangelopoulos D, McHugh TD.
    Chem Biol Drug Des; 2015 Nov; 86(5):951-60. PubMed ID: 25772393
    [Abstract] [Full Text] [Related]

  • 2. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development.
    Poce G, Cocozza M, Consalvi S, Biava M.
    Eur J Med Chem; 2014 Oct 30; 86():335-51. PubMed ID: 25173852
    [Abstract] [Full Text] [Related]

  • 3. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening.
    Manjunatha UH, Smith PW.
    Bioorg Med Chem; 2015 Aug 15; 23(16):5087-97. PubMed ID: 25577708
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents.
    Cooper CB.
    J Med Chem; 2013 Oct 24; 56(20):7755-60. PubMed ID: 23927683
    [Abstract] [Full Text] [Related]

  • 8. Challenges and opportunities in developing novel drugs for TB.
    Kaneko T, Cooper C, Mdluli K.
    Future Med Chem; 2011 Sep 24; 3(11):1373-400. PubMed ID: 21879843
    [Abstract] [Full Text] [Related]

  • 9. The quest for the holy grail: new antitubercular chemical entities, targets and strategies.
    Huszár S, Chibale K, Singh V.
    Drug Discov Today; 2020 Apr 24; 25(4):772-780. PubMed ID: 32062007
    [Abstract] [Full Text] [Related]

  • 10. Recently disclosed chemical entities as potential candidates for management of tuberculosis.
    Stec J, Abourashed EA.
    Pharm Pat Anal; 2015 Apr 24; 4(4):317-47. PubMed ID: 26174569
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Discovery of antitubercular 2,4-diphenyl-1H-imidazoles from chemical library repositioning and rational design.
    Pieroni M, Wan B, Zuliani V, Franzblau SG, Costantino G, Rivara M.
    Eur J Med Chem; 2015 Jul 15; 100():44-9. PubMed ID: 26071857
    [Abstract] [Full Text] [Related]

  • 13. Current status and future trends in the diagnosis and treatment of drug-susceptible and multidrug-resistant tuberculosis.
    Ahmad S, Mokaddas E.
    J Infect Public Health; 2014 Jul 15; 7(2):75-91. PubMed ID: 24216518
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Is repositioning of drugs a viable alternative in the treatment of tuberculosis?
    Palomino JC, Martin A.
    J Antimicrob Chemother; 2013 Feb 15; 68(2):275-83. PubMed ID: 23075693
    [Abstract] [Full Text] [Related]

  • 16. Trends in discovery of new drugs for tuberculosis therapy.
    Riccardi G, Pasca MR.
    J Antibiot (Tokyo); 2014 Sep 15; 67(9):655-9. PubMed ID: 25095807
    [Abstract] [Full Text] [Related]

  • 17. New perspectives on natural products in TB drug research.
    Pauli GF, Case RJ, Inui T, Wang Y, Cho S, Fischer NH, Franzblau SG.
    Life Sci; 2005 Dec 22; 78(5):485-94. PubMed ID: 16243360
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.
    Farah SI, Abdelrahman AA, North EJ, Chauhan H.
    Assay Drug Dev Technol; 2016 Dec 22; 14(1):29-38. PubMed ID: 26565779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.