These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 25773315

  • 1. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing.
    Fan G, Wang L, Deng M, Niu S, Zhao Z, Xu E, Cao X, Zhang X.
    Mol Genet Genomics; 2015 Aug; 290(4):1627-38. PubMed ID: 25773315
    [Abstract] [Full Text] [Related]

  • 2. Identification of genes related to the phenotypic variations of a synthesized Paulownia (Paulownia tomentosa×Paulownia fortunei) autotetraploid.
    Li Y, Fan G, Dong Y, Zhao Z, Deng M, Cao X, Xu E, Niu S.
    Gene; 2014 Dec 15; 553(2):75-83. PubMed ID: 25300252
    [Abstract] [Full Text] [Related]

  • 3. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under drought stress.
    Xu E, Fan G, Niu S, Zhao Z, Deng M, Dong Y.
    PLoS One; 2014 Dec 15; 9(11):e113313. PubMed ID: 25405758
    [Abstract] [Full Text] [Related]

  • 4. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.
    Zhao Z, Li Y, Liu H, Zhai X, Deng M, Dong Y, Fan G.
    PLoS One; 2017 Dec 15; 12(10):e0185455. PubMed ID: 29049296
    [Abstract] [Full Text] [Related]

  • 5. Comparative proteomic analysis of autotetraploid and diploid Paulownia tomentosa reveals proteins associated with superior photosynthetic characteristics and stress adaptability in autotetraploid Paulownia.
    Yan L, Fan G, Deng M, Zhao Z, Dong Y, Li Y.
    Physiol Mol Biol Plants; 2017 Jul 15; 23(3):605-617. PubMed ID: 28878499
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants.
    Yin L, Qu J, Zhou H, Shang X, Fang H, Lu J, Yan H.
    Genes Genomics; 2018 Sep 15; 40(9):927-935. PubMed ID: 30155710
    [Abstract] [Full Text] [Related]

  • 8. Transcriptome-based gene expression profiling of diploid radish (Raphanus sativus L.) and the corresponding autotetraploid.
    Cheng W, Tang M, Xie Y, Xu L, Wang Y, Luo X, Fan L, Liu L.
    Mol Biol Rep; 2019 Feb 15; 46(1):933-945. PubMed ID: 30560406
    [Abstract] [Full Text] [Related]

  • 9. Transcriptome profiling of PeCRY1 transgenic Populus tomentosa.
    Wang L, Wu R, Bo W.
    Genes Genomics; 2018 Apr 15; 40(4):349-359. PubMed ID: 29892838
    [Abstract] [Full Text] [Related]

  • 10. Polyploidy Enhances F1 Pollen Sterility Loci Interactions That Increase Meiosis Abnormalities and Pollen Sterility in Autotetraploid Rice.
    Wu J, Shahid MQ, Chen L, Chen Z, Wang L, Liu X, Lu Y.
    Plant Physiol; 2015 Dec 15; 169(4):2700-17. PubMed ID: 26511913
    [Abstract] [Full Text] [Related]

  • 11. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening.
    Wang J, Dang Z, Zhang H, Zheng L, Borjigin T, Wang Y.
    Mol Genet Genomics; 2016 Feb 15; 291(1):383-98. PubMed ID: 26388259
    [Abstract] [Full Text] [Related]

  • 12. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H, Liu Y, Gai Y, Geng J, Chen L, Liu H, Kang L, Tian Y, Li Y.
    BMC Genomics; 2015 Sep 02; 16(1):652. PubMed ID: 26330221
    [Abstract] [Full Text] [Related]

  • 13. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T, Malhotra N, Chanumolu SK, Chauhan RS.
    Planta; 2015 Jul 02; 242(1):239-58. PubMed ID: 25904478
    [Abstract] [Full Text] [Related]

  • 14. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression.
    Zhang J, Liu Y, Xia EH, Yao QY, Liu XD, Gao LZ.
    Proc Natl Acad Sci U S A; 2015 Dec 15; 112(50):E7022-9. PubMed ID: 26621743
    [Abstract] [Full Text] [Related]

  • 15. Screening and analysis on the differentially expression genes between diploid and autotetraploid watermelon by using of digital gene expression profile.
    Long YL, Qiao F, Jiang XF, Cong HQ, Sun ML, Xu ZJ.
    Braz J Biol; 2019 Dec 15; 79(2):180-190. PubMed ID: 29924132
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Differential transcriptome analysis between Paulownia fortunei and its synthesized autopolyploid.
    Zhang X, Deng M, Fan G.
    Int J Mol Sci; 2014 Mar 21; 15(3):5079-93. PubMed ID: 24663058
    [Abstract] [Full Text] [Related]

  • 18. Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis.
    Niu S, Wang Y, Zhao Z, Deng M, Cao L, Yang L, Fan G.
    PLoS One; 2016 Mar 21; 11(7):e0158750. PubMed ID: 27388154
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.