These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 25779204

  • 1. Carbamylated low-density lipoprotein attenuates glucose uptake via a nitric oxide-mediated pathway in rat L6 skeletal muscle cells.
    Choi HJ, Lee KJ, Hwang EA, Mun KC, Ha E.
    Mol Med Rep; 2015 Jul; 12(1):1342-6. PubMed ID: 25779204
    [Abstract] [Full Text] [Related]

  • 2. Carbamylated low-density lipoprotein induces endothelial dysfunction.
    Speer T, Owala FO, Holy EW, Zewinger S, Frenzel FL, Stähli BE, Razavi M, Triem S, Cvija H, Rohrer L, Seiler S, Heine GH, Jankowski V, Jankowski J, Camici GG, Akhmedov A, Fliser D, Lüscher TF, Tanner FC.
    Eur Heart J; 2014 Nov 14; 35(43):3021-32. PubMed ID: 24658767
    [Abstract] [Full Text] [Related]

  • 3. Native low density lipoprotein increases the production of both nitric oxide and reactive oxygen species in the human umbilical vein endothelial cells.
    Yoon HJ, Chay KO, Yang SY.
    Genes Genomics; 2019 Mar 14; 41(3):373-379. PubMed ID: 30610621
    [Abstract] [Full Text] [Related]

  • 4. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease.
    Ok E, Basnakian AG, Apostolov EO, Barri YM, Shah SV.
    Kidney Int; 2005 Jul 14; 68(1):173-8. PubMed ID: 15954906
    [Abstract] [Full Text] [Related]

  • 5. Carbamylated low-density lipoprotein induces proliferation and increases adhesion molecule expression of human coronary artery smooth muscle cells.
    Asci G, Basci A, Shah SV, Basnakian A, Toz H, Ozkahya M, Duman S, Ok E.
    Nephrology (Carlton); 2008 Dec 14; 13(6):480-6. PubMed ID: 18518940
    [Abstract] [Full Text] [Related]

  • 6. Carbamylated Low-Density Lipoproteins Induce a Prothrombotic State Via LOX-1: Impact on Arterial Thrombus Formation In Vivo.
    Holy EW, Akhmedov A, Speer T, Camici GG, Zewinger S, Bonetti N, Beer JH, Lüscher TF, Tanner FC.
    J Am Coll Cardiol; 2016 Oct 11; 68(15):1664-1676. PubMed ID: 27712780
    [Abstract] [Full Text] [Related]

  • 7. Dietary nitrite improves insulin signaling through GLUT4 translocation.
    Jiang H, Torregrossa AC, Potts A, Pierini D, Aranke M, Garg HK, Bryan NS.
    Free Radic Biol Med; 2014 Feb 11; 67():51-7. PubMed ID: 24157451
    [Abstract] [Full Text] [Related]

  • 8. Impact of divergent effects of astaxanthin on insulin signaling in L6 cells.
    Ishiki M, Nishida Y, Ishibashi H, Wada T, Fujisaka S, Takikawa A, Urakaze M, Sasaoka T, Usui I, Tobe K.
    Endocrinology; 2013 Aug 11; 154(8):2600-12. PubMed ID: 23715867
    [Abstract] [Full Text] [Related]

  • 9. Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells.
    Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL.
    Endocrinology; 2007 Jan 11; 148(1):293-9. PubMed ID: 17023529
    [Abstract] [Full Text] [Related]

  • 10. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.
    Højlund K.
    Dan Med J; 2014 Jul 11; 61(7):B4890. PubMed ID: 25123125
    [Abstract] [Full Text] [Related]

  • 11. High leptin levels acutely inhibit insulin-stimulated glucose uptake without affecting glucose transporter 4 translocation in l6 rat skeletal muscle cells.
    Sweeney G, Keen J, Somwar R, Konrad D, Garg R, Klip A.
    Endocrinology; 2001 Nov 11; 142(11):4806-12. PubMed ID: 11606447
    [Abstract] [Full Text] [Related]

  • 12. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes.
    Nedachi T, Kanzaki M.
    Am J Physiol Endocrinol Metab; 2006 Oct 11; 291(4):E817-28. PubMed ID: 16735448
    [Abstract] [Full Text] [Related]

  • 13. Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats.
    Tan Z, Zhou LJ, Mu PW, Liu SP, Chen SJ, Fu XD, Wang TH.
    J Nutr Biochem; 2012 Dec 11; 23(12):1716-24. PubMed ID: 22569348
    [Abstract] [Full Text] [Related]

  • 14. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells.
    Ceddia RB, Sweeney G.
    J Physiol; 2004 Mar 01; 555(Pt 2):409-21. PubMed ID: 14724211
    [Abstract] [Full Text] [Related]

  • 15. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle.
    Lira VA, Soltow QA, Long JH, Betters JL, Sellman JE, Criswell DS.
    Am J Physiol Endocrinol Metab; 2007 Oct 01; 293(4):E1062-8. PubMed ID: 17666490
    [Abstract] [Full Text] [Related]

  • 16. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells.
    Carracedo J, Merino A, Briceño C, Soriano S, Buendía P, Calleros L, Rodriguez M, Martín-Malo A, Aljama P, Ramírez R.
    FASEB J; 2011 Apr 01; 25(4):1314-22. PubMed ID: 21228221
    [Abstract] [Full Text] [Related]

  • 17. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells.
    Pinheiro CH, Silveira LR, Nachbar RT, Vitzel KF, Curi R.
    Free Radic Biol Med; 2010 Apr 01; 48(7):953-60. PubMed ID: 20080177
    [Abstract] [Full Text] [Related]

  • 18. Oxidative stress--mediated alterations in glucose dynamics in a genetic animal model of type II diabetes.
    Bitar MS, Al-Saleh E, Al-Mulla F.
    Life Sci; 2005 Sep 30; 77(20):2552-73. PubMed ID: 15936776
    [Abstract] [Full Text] [Related]

  • 19. Methylglyoxal impairs GLUT4 trafficking and leads to increased glucose uptake in L6 myoblasts.
    Engelbrecht B, Mattern Y, Scheibler S, Tschoepe D, Gawlowski T, Stratmann B.
    Horm Metab Res; 2014 Feb 30; 46(2):77-84. PubMed ID: 24108388
    [Abstract] [Full Text] [Related]

  • 20. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats.
    Tachibana N, Yamashita Y, Nagata M, Wanezaki S, Ashida H, Horio F, Kohno M.
    Nutr Res; 2014 Feb 30; 34(2):160-7. PubMed ID: 24461318
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.