These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 25779871

  • 1. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.
    Ishida IG, Rangel-Yescas GE, Carrasco-Zanini J, Islas LD.
    J Gen Physiol; 2015 Apr; 145(4):345-58. PubMed ID: 25779871
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Environment of the gating charges in the Kv1.2 Shaker potassium channel.
    Treptow W, Tarek M.
    Biophys J; 2006 May 01; 90(9):L64-6. PubMed ID: 16533847
    [Abstract] [Full Text] [Related]

  • 4. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.
    Elliott DJ, Neale EJ, Munsey TS, Bannister JP, Sivaprasadarao A.
    Mol Membr Biol; 2012 Dec 01; 29(8):321-32. PubMed ID: 22881396
    [Abstract] [Full Text] [Related]

  • 5. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?
    Tarek M, Delemotte L.
    Acc Chem Res; 2013 Dec 17; 46(12):2755-62. PubMed ID: 23697886
    [Abstract] [Full Text] [Related]

  • 6. Structure prediction for the down state of a potassium channel voltage sensor.
    Grabe M, Lai HC, Jain M, Jan YN, Jan LY.
    Nature; 2007 Feb 01; 445(7127):550-3. PubMed ID: 17187053
    [Abstract] [Full Text] [Related]

  • 7. Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.
    Khalili-Araghi F, Jogini V, Yarov-Yarovoy V, Tajkhorshid E, Roux B, Schulten K.
    Biophys J; 2010 May 19; 98(10):2189-98. PubMed ID: 20483327
    [Abstract] [Full Text] [Related]

  • 8. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C, Morera FJ, Rosenmann E, Alvarez O, Latorre R.
    Proc Natl Acad Sci U S A; 2005 Apr 05; 102(14):5020-5. PubMed ID: 15774578
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
    Watanabe I, Zhu J, Sutachan JJ, Gottschalk A, Recio-Pinto E, Thornhill WB.
    Brain Res; 2007 May 04; 1144():1-18. PubMed ID: 17324383
    [Abstract] [Full Text] [Related]

  • 12. Conformational dynamics of the inner pore helix of voltage-gated potassium channels.
    Choe S, Grabe M.
    J Chem Phys; 2009 Jun 07; 130(21):215103. PubMed ID: 19508102
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Moving gating charges through the gating pore in a Kv channel voltage sensor.
    Lacroix JJ, Hyde HC, Campos FV, Bezanilla F.
    Proc Natl Acad Sci U S A; 2014 May 13; 111(19):E1950-9. PubMed ID: 24782544
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.