These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 25794661

  • 1. Rapamycin can restore the negative regulatory function of transforming growth factor beta 1 in high grade lymphomas.
    Sebestyén A, Márk Á, Hajdu M, Nagy N, Molnár A, Végső G, Barna G, Kopper L.
    Cytokine; 2015 Jun; 73(2):219-24. PubMed ID: 25794661
    [Abstract] [Full Text] [Related]

  • 2. Transforming Growth Factor β1-induced Apoptosis in Podocytes via the Extracellular Signal-regulated Kinase-Mammalian Target of Rapamycin Complex 1-NADPH Oxidase 4 Axis.
    Das R, Xu S, Nguyen TT, Quan X, Choi SK, Kim SJ, Lee EY, Cha SK, Park KS.
    J Biol Chem; 2015 Dec 25; 290(52):30830-42. PubMed ID: 26565025
    [Abstract] [Full Text] [Related]

  • 3. Mammalian Target of Rapamycin (mTOR) Regulates Transforming Growth Factor-β1 (TGF-β1)-Induced Epithelial-Mesenchymal Transition via Decreased Pyruvate Kinase M2 (PKM2) Expression in Cervical Cancer Cells.
    Cheng KY, Hao M.
    Med Sci Monit; 2017 Apr 27; 23():2017-2028. PubMed ID: 28446743
    [Abstract] [Full Text] [Related]

  • 4. Activation of extracellular signal-regulated kinase by TGF-beta1 via TbetaRII and Smad7 dependent mechanisms in human bronchial epithelial BEP2D cells.
    Huo YY, Hu YC, He XR, Wang Y, Song BQ, Zhou PK, Zhu MX, Li G, Wu DC.
    Cell Biol Toxicol; 2007 Mar 27; 23(2):113-28. PubMed ID: 17096210
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis.
    Guo Y, Kyprianou N.
    Cancer Res; 1999 Mar 15; 59(6):1366-71. PubMed ID: 10096572
    [Abstract] [Full Text] [Related]

  • 7. Prolidase-dependent regulation of TGF β (corrected) and TGF β receptor expressions in human skin fibroblasts.
    Surazynski A, Miltyk W, Prokop I, Palka J.
    Eur J Pharmacol; 2010 Dec 15; 649(1-3):115-9. PubMed ID: 20868675
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Smad signal and TGFbeta induced apoptosis in human lymphoma cells.
    Sebestyén A, Barna G, Nagy K, Jánosi J, Paku S, Kohut E, Berczi L, Mihalik R, Kopper L.
    Cytokine; 2005 Jun 07; 30(5):228-35. PubMed ID: 15927846
    [Abstract] [Full Text] [Related]

  • 10. Control of a tumor suppressor PDCD4: Degradation mechanisms of the protein in hepatocellular carcinoma cells.
    Matsuhashi S, Hamajima H, Xia J, Zhang H, Mizuta T, Anzai K, Ozaki I.
    Cell Signal; 2014 Mar 07; 26(3):603-10. PubMed ID: 24334270
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Negative control of TRAIL-R1 signaling by transforming growth factor β1 in pancreatic tumor cells involves Smad-dependent down regulation of TRAIL-R1.
    Radke DI, Ungefroren H, Helm O, Voigt S, Alp G, Braun H, Hübner S, Dilchert J, Sebens S, Adam D, Kalthoff H, Trauzold A.
    Cell Signal; 2016 Nov 07; 28(11):1652-62. PubMed ID: 27492861
    [Abstract] [Full Text] [Related]

  • 13. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.
    Chen RH, Su YH, Chuang RL, Chang TY.
    Oncogene; 1998 Oct 15; 17(15):1959-68. PubMed ID: 9788439
    [Abstract] [Full Text] [Related]

  • 14. Smad4-independent, PP2A-dependent apoptotic effect of exogenous transforming growth factor beta 1 in lymphoma cells.
    Sebestyén A, Hajdu M, Kis L, Barna G, Kopper L.
    Exp Cell Res; 2007 Sep 10; 313(15):3167-74. PubMed ID: 17643425
    [Abstract] [Full Text] [Related]

  • 15. DRAK2 participates in a negative feedback loop to control TGF-β/Smads signaling by binding to type I TGF-β receptor.
    Yang KM, Kim W, Bae E, Gim J, Weist BM, Jung Y, Hyun JS, Hernandez JB, Leem SH, Park T, Jeong J, Walsh CM, Kim SJ.
    Cell Rep; 2012 Nov 29; 2(5):1286-99. PubMed ID: 23122956
    [Abstract] [Full Text] [Related]

  • 16. Lentiviral-mediated Smad4 RNAi induced anti-proliferation by p16 up-regulation and apoptosis by caspase 3 down-regulation in hepatoma SMMC-7721 cells.
    Huang S, Zhang F, Miao L, Zhang H, Fan Z, Wang X, Ji G.
    Oncol Rep; 2008 Nov 29; 20(5):1053-9. PubMed ID: 18949401
    [Abstract] [Full Text] [Related]

  • 17. Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck.
    Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, Sauk JJ, Sausville EA, Molinolo AA, Gutkind JS.
    Cancer Res; 2005 Nov 01; 65(21):9953-61. PubMed ID: 16267020
    [Abstract] [Full Text] [Related]

  • 18. Suppression of AKT phosphorylation restores rapamycin-based synthetic lethality in SMAD4-defective pancreatic cancer cells.
    Le Gendre O, Sookdeo A, Duliepre SA, Utter M, Frias M, Foster DA.
    Mol Cancer Res; 2013 May 01; 11(5):474-81. PubMed ID: 23443316
    [Abstract] [Full Text] [Related]

  • 19. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary.
    Wang ZP, Mu XY, Guo M, Wang YJ, Teng Z, Mao GP, Niu WB, Feng LZ, Zhao LH, Xia GL.
    J Biol Chem; 2014 Mar 21; 289(12):8299-311. PubMed ID: 24515103
    [Abstract] [Full Text] [Related]

  • 20. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1.
    Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S, Reiss M.
    Cancer Res; 2004 Aug 01; 64(15):5200-11. PubMed ID: 15289325
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.