These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
417 related items for PubMed ID: 25799081
41. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Weng X, Neethirajan S. Biosens Bioelectron; 2016 Nov 15; 85():649-656. PubMed ID: 27240012 [Abstract] [Full Text] [Related]
42. Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Zheng Z, Du Y, Wang Z, Feng Q, Wang C. Analyst; 2013 Jan 21; 138(2):693-701. PubMed ID: 23187892 [Abstract] [Full Text] [Related]
43. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO. Sun X, Liu B, Yang C, Li C. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():288-93. PubMed ID: 24835931 [Abstract] [Full Text] [Related]
44. A novel aptasensing method for detecting bisphenol A using the catalytic effect of the Fe3O4/Au nanoparticles on the reduction reaction of the silver ions. Farahbakhsh F, Heydari-Bafrooei E, Ahmadi M, Hoda Hekmatara S, Sabet M. Food Chem; 2021 Sep 01; 355():129666. PubMed ID: 33799256 [Abstract] [Full Text] [Related]
45. Dual-signal amplified electrochemical aptasensor based on Au/MrGO and DNA nanospheres for ultra-sensitive detection of BPA without directly modified working electrode. Hu L, Cui J, Lu T, Wang Y, Jia J. Chemosphere; 2024 Jun 01; 357():142063. PubMed ID: 38636912 [Abstract] [Full Text] [Related]
46. Rapid and sensitive determination of bisphenol A using aptamer and split DNAzyme. Xu J, Lee ES, Gye MC, Kim YP. Chemosphere; 2019 Aug 01; 228():110-116. PubMed ID: 31026631 [Abstract] [Full Text] [Related]
47. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Youn H, Lee K, Her J, Jeon J, Mok J, So JI, Shin S, Ban C. Sci Rep; 2019 May 21; 9(1):7659. PubMed ID: 31114011 [Abstract] [Full Text] [Related]
48. One-step synthesis of reduced graphene oxide sheathed zinc oxide nanoclusters for the trace level detection of bisphenol A in tissue papers. Akilarasan M, Kogularasu S, Chen SM, Chen TW, Lin SH. Ecotoxicol Environ Saf; 2018 Oct 21; 161():699-705. PubMed ID: 29940510 [Abstract] [Full Text] [Related]
49. Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Hernández R, Vallés C, Benito AM, Maser WK, Rius FX, Riu J. Biosens Bioelectron; 2014 Apr 15; 54():553-7. PubMed ID: 24325983 [Abstract] [Full Text] [Related]
50. A simple fluorescence anisotropy assay for detection of bisphenol A using fluorescently labeled aptamer. Liu L, Zhao Q. J Environ Sci (China); 2020 Nov 15; 97():19-24. PubMed ID: 32933735 [Abstract] [Full Text] [Related]
51. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Arvand M, Mirroshandel AA. Food Chem; 2019 May 15; 280():115-122. PubMed ID: 30642476 [Abstract] [Full Text] [Related]
52. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Li H, Sun DE, Liu Y, Liu Z. Biosens Bioelectron; 2014 May 15; 55():149-56. PubMed ID: 24373954 [Abstract] [Full Text] [Related]
53. An ultrasensitive electrochemical biosensor for bisphenol A based on aptamer-modified MrGO@AuNPs and ssDNA-functionalized AuNP@MBs synergistic amplification. Hu L, Cui J, Wang Y, Jia J. Chemosphere; 2023 Jan 15; 311(Pt 2):137154. PubMed ID: 36351468 [Abstract] [Full Text] [Related]
54. Detection of bisphenol A using palm-size NanoAptamer analyzer. Lim HJ, Chua B, Son A. Biosens Bioelectron; 2017 Aug 15; 94():10-18. PubMed ID: 28237901 [Abstract] [Full Text] [Related]
55. Graphene Oxide Quantum Dots Assisted Construction of Fluorescent Aptasensor for Rapid Detection of Pseudomonas aeruginosa in Food Samples. Gao R, Zhong Z, Gao X, Jia L. J Agric Food Chem; 2018 Oct 17; 66(41):10898-10905. PubMed ID: 30247907 [Abstract] [Full Text] [Related]
56. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Tan B, Zhao H, Du L, Gan X, Quan X. Biosens Bioelectron; 2016 Sep 15; 83():267-73. PubMed ID: 27132000 [Abstract] [Full Text] [Related]
57. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Zhu Y, Zhou C, Yan X, Yan Y, Wang Q. Anal Chim Acta; 2015 Jul 09; 883():81-9. PubMed ID: 26088780 [Abstract] [Full Text] [Related]
58. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Lee EH, Lee SK, Kim MJ, Lee SW. Food Chem; 2019 Jul 30; 287():205-213. PubMed ID: 30857691 [Abstract] [Full Text] [Related]
59. Design of ultrasensitive bisphenol A-aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes. Derikvandi Z, Abbasi AR, Roushani M, Derikvand Z, Azadbakht A. Anal Biochem; 2016 Nov 01; 512():47-57. PubMed ID: 27307183 [Abstract] [Full Text] [Related]
60. Graphene-based aptamer logic gates and their application to multiplex detection. Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, Dong S. ACS Nano; 2012 Aug 28; 6(8):6659-66. PubMed ID: 22823159 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]