These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 25813968

  • 1. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S, Wang B, Chu KH.
    Sci Total Environ; 2015 Jul 01; 520():154-9. PubMed ID: 25813968
    [Abstract] [Full Text] [Related]

  • 2. Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria.
    Wang B, Chu KH.
    Chemosphere; 2017 Feb 01; 168():1494-1497. PubMed ID: 27939660
    [Abstract] [Full Text] [Related]

  • 3. Characterizing the intrinsic bioremediation potential of 1,4-dioxane and trichloroethene using innovative environmental diagnostic tools.
    Chiang SY, Mora R, Diguiseppi WH, Davis G, Sublette K, Gedalanga P, Mahendra S.
    J Environ Monit; 2012 Sep 01; 14(9):2317-26. PubMed ID: 22825917
    [Abstract] [Full Text] [Related]

  • 4. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.
    Sekar R, Taillefert M, DiChristina TJ.
    Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.
    Wackett LP, Brusseau GA, Householder SR, Hanson RS.
    Appl Environ Microbiol; 1989 Nov 01; 55(11):2960-4. PubMed ID: 2624467
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
    Kang JW, Doty SL.
    Can J Microbiol; 2014 Jul 01; 60(7):487-90. PubMed ID: 24992516
    [Abstract] [Full Text] [Related]

  • 10. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
    Mahendra S, Grostern A, Alvarez-Cohen L.
    Chemosphere; 2013 Mar 01; 91(1):88-92. PubMed ID: 23237300
    [Abstract] [Full Text] [Related]

  • 11. 1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption.
    Milavec J, Tick GR, Brusseau ML, Carroll KC.
    Environ Pollut; 2019 Sep 01; 252(Pt A):777-783. PubMed ID: 31200203
    [Abstract] [Full Text] [Related]

  • 12. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula.
    Ramalingam V, Cupples AM.
    Appl Microbiol Biotechnol; 2020 Mar 01; 104(5):2255-2269. PubMed ID: 31956944
    [Abstract] [Full Text] [Related]

  • 13. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB, Banerjee R, Rezes R, Streger SH, McClay K, Schaefer CE.
    Biodegradation; 2017 Dec 01; 28(5-6):453-468. PubMed ID: 29022194
    [Abstract] [Full Text] [Related]

  • 14. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria.
    Mahendra S, Alvarez-Cohen L.
    Environ Sci Technol; 2006 Sep 01; 40(17):5435-42. PubMed ID: 16999122
    [Abstract] [Full Text] [Related]

  • 15. Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane.
    Li F, Deng D, Zeng L, Abrams S, Li M.
    Sci Total Environ; 2021 Jun 20; 774():145118. PubMed ID: 33610989
    [Abstract] [Full Text] [Related]

  • 16. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.
    Li H, Zhang SY, Wang XL, Yang J, Gu JD, Zhu RL, Wang P, Lin KF, Liu YD.
    Environ Technol; 2015 Jun 20; 36(5-8):667-74. PubMed ID: 25220534
    [Abstract] [Full Text] [Related]

  • 17. Oxidative degradation of commingled trichloroethylene and 1,4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral.
    Zhou Z, Zeng Q, Li G, Hu D, Xia Q, Dong H.
    Chemosphere; 2022 Mar 20; 290():133265. PubMed ID: 34914951
    [Abstract] [Full Text] [Related]

  • 18. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site.
    Lee MH, Clingenpeel SC, Leiser OP, Wymore RA, Sorenson KS, Watwood ME.
    Environ Pollut; 2008 May 20; 153(1):238-46. PubMed ID: 17904715
    [Abstract] [Full Text] [Related]

  • 19. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.
    Brown JR, Thompson IP, Paton GI, Singer AC.
    Lett Appl Microbiol; 2009 Dec 20; 49(6):769-74. PubMed ID: 19843209
    [Abstract] [Full Text] [Related]

  • 20. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation.
    Eshghdoostkhatami Z, Cupples AM.
    J Microbiol Methods; 2024 Apr 20; 219():106908. PubMed ID: 38403133
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.