These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 2581461

  • 21. Changes in cyclic nucleotide levels during embryonic development of chick hearts.
    Thakkar JK, Sperelakis N.
    J Dev Physiol; 1987 Dec; 9(6):497-505. PubMed ID: 2832464
    [Abstract] [Full Text] [Related]

  • 22. Cyclic nucleotides regulate the activity of L-type calcium channels in smooth muscle cells from rat portal vein.
    Liu H, Xiong Z, Sperelakis N.
    J Mol Cell Cardiol; 1997 May; 29(5):1411-21. PubMed ID: 9201626
    [Abstract] [Full Text] [Related]

  • 23. Influence of calcium and cyclic nucleotides on beta-adrenergic sweat secretion in equine sweat glands.
    Bijman J, Quinton PM.
    Am J Physiol; 1984 Jul; 247(1 Pt 1):C10-3. PubMed ID: 6331181
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Glycine receptor in hippocampal neurons as a target for action of extracellular cyclic nucleotides.
    Bukanova JV, Solntseva EI, Kondratenko RV, Skrebitsky VG.
    Neurosci Lett; 2014 Feb 21; 561():58-63. PubMed ID: 24373992
    [Abstract] [Full Text] [Related]

  • 26. Stimulation of slow action potentials in guinea pig papillary muscle cells by intracellular injection of cAMP, Gpp(NH)p, and cholera toxin.
    Li T, Sperelakis N.
    Circ Res; 1983 Jan 21; 52(1):111-7. PubMed ID: 6293738
    [Abstract] [Full Text] [Related]

  • 27. Cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the hawkmoth Manduca sexta.
    Krannich S, Stengl M.
    J Neurophysiol; 2008 Nov 21; 100(5):2866-77. PubMed ID: 18684910
    [Abstract] [Full Text] [Related]

  • 28. Modulation of calcium channels in cultured cardiac cells by isoproterenol and 8-bromo-cAMP.
    Reuter H, Cachelin AB, De Peyer JE, Kokubun S.
    Cold Spring Harb Symp Quant Biol; 1983 Nov 21; 48 Pt 1():193-200. PubMed ID: 6327153
    [No Abstract] [Full Text] [Related]

  • 29. Mechanisms of cyclic nucleotide-induced relaxation in canine tracheal smooth muscle.
    McGrogan I, Lu S, Hipworth S, Sormaz L, Eng R, Preocanin D, Daniel EE.
    Am J Physiol; 1995 Mar 21; 268(3 Pt 1):L407-13. PubMed ID: 7900822
    [Abstract] [Full Text] [Related]

  • 30. Apamin, a highly specific Ca2+ blocking agent in heart muscle.
    Bkaily G, Sperelakis N, Renaud JF, Payet MD.
    Am J Physiol; 1985 Jun 21; 248(6 Pt 2):H961-5. PubMed ID: 2408493
    [Abstract] [Full Text] [Related]

  • 31. Intracellular injection of cyclic GMP depresses cardiac slow action potentials.
    Wahler GM, Sperelakis N.
    J Cyclic Nucleotide Protein Phosphor Res; 1985 Jun 21; 10(1):83-95. PubMed ID: 2984266
    [Abstract] [Full Text] [Related]

  • 32. Biphasic effects of intrapipette cyclic guanosine monophosphate on L-type calcium current and contraction of guinea pig ventricular myocytes.
    Shirayama T, Pappano AJ.
    J Pharmacol Exp Ther; 1996 Dec 21; 279(3):1274-81. PubMed ID: 8968351
    [Abstract] [Full Text] [Related]

  • 33. cGMP and cyclic nucleotide-gated channels participate in mouse sperm capacitation.
    Cisneros-Mejorado A, Sánchez Herrera DP.
    FEBS Lett; 2012 Jan 20; 586(2):149-53. PubMed ID: 22192355
    [Abstract] [Full Text] [Related]

  • 34. The novel role of 3',5'-guanosine monophosphate (cGMP) on the differentiation of trophoblasts: comparison with the effects of 3',5'-adenosine monophosphate (cAMP).
    Sawai K, Azuma C, Koyama M, Hashimoto K, Kimura T, Samejima Y, Nobunaga T, Takemura M, Saji F.
    Early Pregnancy; 1996 Dec 20; 2(4):244-52. PubMed ID: 9363223
    [Abstract] [Full Text] [Related]

  • 35. 8-Bromo-cyclic GMP inhibits the calcium channel current in embryonic chick ventricular myocytes.
    Wahler GM, Rusch NJ, Sperelakis N.
    Can J Physiol Pharmacol; 1990 Apr 20; 68(4):531-4. PubMed ID: 2328456
    [Abstract] [Full Text] [Related]

  • 36. Yohimbine blockade of ionic channels in myocardial cells.
    Azuma J, Vogel S, Josephson I, Sperelakis N.
    Eur J Pharmacol; 1978 Sep 15; 51(2):109-19. PubMed ID: 699977
    [Abstract] [Full Text] [Related]

  • 37. Regulation of calcium slow channels of cardiac muscle by cyclic nucleotides and phosphorylation.
    Sperelakis N.
    J Mol Cell Cardiol; 1988 Mar 15; 20 Suppl 2():75-105. PubMed ID: 2457707
    [Abstract] [Full Text] [Related]

  • 38. The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats.
    Reinke Y, Gross S, Eckerle LG, Hertrich I, Busch M, Busch R, Riad A, Rauch BH, Stasch JP, Dörr M, Felix SB.
    Eur J Pharmacol; 2015 Nov 15; 767():1-9. PubMed ID: 26407652
    [Abstract] [Full Text] [Related]

  • 39. Cyclic adenosine 3':5'-monophosphate and cytosolic calcium exert opposing effects on biosynthesis of tetrodotoxin-sensitive sodium channels in rat muscle cells.
    Sherman SJ, Chrivia J, Catterall WA.
    J Neurosci; 1985 Jun 15; 5(6):1570-6. PubMed ID: 2409245
    [Abstract] [Full Text] [Related]

  • 40. Modulation of human neutrophil chemotactic responses by cyclic 3',5'-guanosine monophosphate and cyclic 3',5'-adenosine monophosphate.
    Hill HR, Estensen RD, Quie PG, Hogan NA, Goldberg ND.
    Metabolism; 1975 Mar 15; 24(3):447-56. PubMed ID: 165364
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.