These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 2581604

  • 1. Inhibition of monoclonal antibody binding and proteolysis by light-induced phosphorylation of rhodopsin.
    Molday RS, MacKenzie D.
    Biochemistry; 1985 Jan 29; 24(3):776-81. PubMed ID: 2581604
    [Abstract] [Full Text] [Related]

  • 2. Localization of binding sites for carboxyl terminal specific anti-rhodopsin monoclonal antibodies using synthetic peptides.
    MacKenzie D, Arendt A, Hargrave P, McDowell JH, Molday RS.
    Biochemistry; 1984 Dec 18; 23(26):6544-9. PubMed ID: 6529569
    [Abstract] [Full Text] [Related]

  • 3. A phosphorylation-sensitive anti-rhodopsin monoclonal antibody reveals light-induced phosphorylation of rhodopsin in the photoreceptor cell body.
    Hicks D, Barnstable CJ.
    Eur J Cell Biol; 1987 Oct 18; 44(2):341-7. PubMed ID: 3691553
    [Abstract] [Full Text] [Related]

  • 4. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin.
    Hicks D, Molday RS.
    Exp Eye Res; 1986 Jan 18; 42(1):55-71. PubMed ID: 2420630
    [Abstract] [Full Text] [Related]

  • 5. Phosphorylation at sites near rhodopsin's carboxyl-terminus regulates light initiated cGMP hydrolysis.
    Miller JL, Dratz EA.
    Vision Res; 1984 Jan 18; 24(11):1509-21. PubMed ID: 6099932
    [Abstract] [Full Text] [Related]

  • 6. Transglutaminase modification of rhodopsin in retinal rod outer segment disk membranes.
    McDowell JH, Ubel A, Brown RA, Hargrave PA.
    Arch Biochem Biophys; 1986 Sep 18; 249(2):506-14. PubMed ID: 2875689
    [Abstract] [Full Text] [Related]

  • 7. Organization of rhodopsin and a high molecular weight glycoprotein in rod photoreceptor disc membranes using monoclonal antibodies.
    MacKenzie D, Molday RS.
    J Biol Chem; 1982 Jun 25; 257(12):7100-5. PubMed ID: 7085619
    [Abstract] [Full Text] [Related]

  • 8. Antigen-antibody interaction. Synthetic peptides define linear antigenic determinants recognized by monoclonal antibodies directed to the cytoplasmic carboxyl terminus of rhodopsin.
    Hodges RS, Heaton RJ, Parker JM, Molday L, Molday RS.
    J Biol Chem; 1988 Aug 25; 263(24):11768-75. PubMed ID: 2457026
    [Abstract] [Full Text] [Related]

  • 9. Use of 8-azidoguanosine 5'-[gamma-32P]triphosphate as a probe of the guanosine 5'-triphosphate binding protein subunits in bovine rod outer segments.
    Kohnken RE, Mc Connell DG.
    Biochemistry; 1985 Jul 02; 24(14):3803-9. PubMed ID: 3929835
    [Abstract] [Full Text] [Related]

  • 10. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment.
    Gupta BD.
    Indian J Biochem Biophys; 1989 Oct 02; 26(5):305-10. PubMed ID: 2560768
    [Abstract] [Full Text] [Related]

  • 11. Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination.
    Binder BM, Biernbaum MS, Bownds MD.
    J Biol Chem; 1990 Sep 05; 265(25):15333-40. PubMed ID: 2394724
    [Abstract] [Full Text] [Related]

  • 12. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN, Latimer LH, O'Brien DF.
    Biochemistry; 1988 Apr 19; 27(8):2696-705. PubMed ID: 2840946
    [Abstract] [Full Text] [Related]

  • 13. Evidence against the role of rhodopsin in rod outer segment binding to RPE cells.
    Laird DW, Molday RS.
    Invest Ophthalmol Vis Sci; 1988 Mar 19; 29(3):419-28. PubMed ID: 3343097
    [Abstract] [Full Text] [Related]

  • 14. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules.
    Aton BR.
    Biochemistry; 1986 Feb 11; 25(3):677-80. PubMed ID: 3955023
    [Abstract] [Full Text] [Related]

  • 15. Assay of phosphorylation of rhodopsin in vitro and in vivo.
    Kühn H, Wilden U.
    Methods Enzymol; 1982 Feb 11; 81():489-96. PubMed ID: 7047991
    [No Abstract] [Full Text] [Related]

  • 16. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D, Hofmann KP.
    FEBS Lett; 1981 Dec 28; 136(2):201-7. PubMed ID: 7327258
    [No Abstract] [Full Text] [Related]

  • 17. Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation.
    Miller JL, Fox DA, Litman BJ.
    Biochemistry; 1986 Sep 09; 25(18):4983-8. PubMed ID: 3021208
    [Abstract] [Full Text] [Related]

  • 18. Detection and properties of rapid calcium release from binding sites in isolated rod outer segments upon photoexcitation of rhodopsin.
    Kaupp UB, Junge W.
    Methods Enzymol; 1982 Sep 09; 81():569-76. PubMed ID: 7098896
    [No Abstract] [Full Text] [Related]

  • 19. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin.
    McDowell JH, Robinson PR, Miller RL, Brannock MT, Arendt A, Smith WC, Hargrave PA.
    Invest Ophthalmol Vis Sci; 2001 Jun 09; 42(7):1439-43. PubMed ID: 11381044
    [Abstract] [Full Text] [Related]

  • 20. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes.
    Thomas DD, Stryer L.
    J Mol Biol; 1982 Jan 05; 154(1):145-57. PubMed ID: 7077659
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.