These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 25822695

  • 21. Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC-APCI-MS-MS.
    Fasciotti M, Pereira Netto AD.
    Talanta; 2010 May 15; 81(3):1116-25. PubMed ID: 20298902
    [Abstract] [Full Text] [Related]

  • 22. Novel qPCR systems for olive (Olea europaea L.) authentication in oils and food.
    Ramos-Gómez S, Busto MD, Albillos SM, Ortega N.
    Food Chem; 2016 Mar 01; 194():447-54. PubMed ID: 26471578
    [Abstract] [Full Text] [Related]

  • 23. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data.
    Georgouli K, Martinez Del Rincon J, Koidis A.
    Food Chem; 2017 Feb 15; 217():735-742. PubMed ID: 27664692
    [Abstract] [Full Text] [Related]

  • 24. Spectral detection technology of vegetable oil: Spectral analysis of porphyrins and terpenoids.
    Wang H, Xin Y, Wan X.
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov 15; 261():119965. PubMed ID: 34144333
    [Abstract] [Full Text] [Related]

  • 25. [Study on the determination of tung oil adulterated in vegetable oils by first derivative spectrophotometry].
    Zhu B, Mo J, Huang R.
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Jun 15; 18(3):376-80. PubMed ID: 15810289
    [Abstract] [Full Text] [Related]

  • 26. Comparison of Furans Formation and Volatile Aldehydes Profiles of Four Different Vegetable Oils During Thermal Oxidation.
    Wang Y, Zhu M, Mei J, Luo S, Leng T, Chen Y, Nie S, Xie M.
    J Food Sci; 2019 Jul 15; 84(7):1966-1978. PubMed ID: 31206695
    [Abstract] [Full Text] [Related]

  • 27. [Three-Iindex-Value Method for Rapid Screening Unqualified Vegetable Oil].
    He WX, Hong GS, Fang R, Cai XC, Huang S.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr 15; 35(4):1001-9. PubMed ID: 26197591
    [Abstract] [Full Text] [Related]

  • 28. Endogenous n-Alkanes in Vegetable Oils: Validation of a Rapid Offline SPE-GC-FID Method, Comparison with Online LC-GC-FID and Potential for Olive Oil Quality Control.
    Srbinovska A, Lucci P, Conchione C, Barp L, Moret S.
    Molecules; 2023 May 28; 28(11):. PubMed ID: 37298869
    [Abstract] [Full Text] [Related]

  • 29. The Fatty Acid Composition of Vegetable Oils and Their Potential Use in Wound Care.
    Alves AQ, da Silva VA, Góes AJS, Silva MS, de Oliveira GG, Bastos IVGA, de Castro Neto AG, Alves AJ.
    Adv Skin Wound Care; 2019 Aug 28; 32(8):1-8. PubMed ID: 31339869
    [Abstract] [Full Text] [Related]

  • 30. Stepwise strategy based on 1H-NMR fingerprinting in combination with chemometrics to determine the content of vegetable oils in olive oil mixtures.
    Alonso-Salces RM, Berrueta LÁ, Quintanilla-Casas B, Vichi S, Tres A, Collado MI, Asensio-Regalado C, Viacava GE, Poliero AA, Valli E, Bendini A, Gallina Toschi T, Martínez-Rivas JM, Moreda W, Gallo B.
    Food Chem; 2022 Jan 01; 366():130588. PubMed ID: 34314930
    [Abstract] [Full Text] [Related]

  • 31. Detection of the presence of hazelnut oil in olive oil by FT-raman and FT-MIR spectroscopy.
    Baeten V, Fernández Pierna JA, Dardenne P, Meurens M, García-González DL, Aparicio-Ruiz R.
    J Agric Food Chem; 2005 Aug 10; 53(16):6201-6. PubMed ID: 16076094
    [Abstract] [Full Text] [Related]

  • 32. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC.
    Jabeur H, Zribi A, Makni J, Rebai A, Abdelhedi R, Bouaziz M.
    J Agric Food Chem; 2014 May 28; 62(21):4893-904. PubMed ID: 24811341
    [Abstract] [Full Text] [Related]

  • 33. New UHPLC-QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils.
    Collado-González J, Medina S, Durand T, Guy A, Galano JM, Torrecillas A, Ferreres F, Gil-Izquierdo A.
    Food Chem; 2015 Jul 01; 178():212-20. PubMed ID: 25704704
    [Abstract] [Full Text] [Related]

  • 34. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.
    Vietina M, Agrimonti C, Marmiroli N.
    Food Chem; 2013 Dec 15; 141(4):3820-6. PubMed ID: 23993554
    [Abstract] [Full Text] [Related]

  • 35. Determination of tert-butylhydroquinone in vegetable oils using surface-enhanced Raman spectroscopy.
    Pan Y, Lai K, Fan Y, Li C, Pei L, Rasco BA, Huang Y.
    J Food Sci; 2014 Jun 15; 79(6):T1225-30. PubMed ID: 24784825
    [Abstract] [Full Text] [Related]

  • 36. Evaluation of the overall quality of olive oil using fluorescence spectroscopy.
    Guzmán E, Baeten V, Pierna JA, García-Mesa JA.
    Food Chem; 2015 Apr 15; 173():927-34. PubMed ID: 25466108
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Fluorescence spectra measurement of olive oil and other vegetable oils.
    Kyriakidis NB, Skarkalis P.
    J AOAC Int; 2000 Apr 15; 83(6):1435-9. PubMed ID: 11128149
    [Abstract] [Full Text] [Related]

  • 39. Complex role of monoacylglycerols in the oxidation of vegetable oils: different behaviors of soybean monoacylglycerols in different oils.
    Paradiso VM, Caponio F, Bruno G, Pasqualone A, Summo C, Gomes T.
    J Agric Food Chem; 2014 Nov 05; 62(44):10776-82. PubMed ID: 25310182
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.