These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
414 related items for PubMed ID: 25824142
1. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. Kothandaraman J, Czaun M, Goeppert A, Haiges R, Jones JP, May RB, Prakash GK, Olah GA. ChemSusChem; 2015 Apr 24; 8(8):1442-51. PubMed ID: 25824142 [Abstract] [Full Text] [Related]
2. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3. Mellone I, Peruzzini M, Rosi L, Mellmann D, Junge H, Beller M, Gonsalvi L. Dalton Trans; 2013 Feb 21; 42(7):2495-501. PubMed ID: 23212285 [Abstract] [Full Text] [Related]
3. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. Himeda Y, Miyazawa S, Hirose T. ChemSusChem; 2011 Apr 18; 4(4):487-93. PubMed ID: 21271682 [Abstract] [Full Text] [Related]
5. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Fellay C, Dyson PJ, Laurenczy G. Angew Chem Int Ed Engl; 2008 Apr 18; 47(21):3966-8. PubMed ID: 18393267 [No Abstract] [Full Text] [Related]
6. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. Su J, Yang L, Lu M, Lin H. ChemSusChem; 2015 Mar 18; 8(5):813-6. PubMed ID: 25663262 [Abstract] [Full Text] [Related]
10. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Loges B, Boddien A, Junge H, Beller M. Angew Chem Int Ed Engl; 2008 Mar 18; 47(21):3962-5. PubMed ID: 18457345 [No Abstract] [Full Text] [Related]
15. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation. Touge T, Hakamata T, Nara H, Kobayashi T, Sayo N, Saito T, Kayaki Y, Ikariya T. J Am Chem Soc; 2011 Sep 28; 133(38):14960-3. PubMed ID: 21870824 [Abstract] [Full Text] [Related]
16. Synthesis of peptides and pyrazines from β-amino alcohols through extrusion of H2 catalyzed by ruthenium pincer complexes: ligand-controlled selectivity. Gnanaprakasam B, Balaraman E, Ben-David Y, Milstein D. Angew Chem Int Ed Engl; 2011 Dec 16; 50(51):12240-4. PubMed ID: 22031234 [No Abstract] [Full Text] [Related]
17. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes. Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, Nielsen M, Junge H, Dixneuf P, Beller M. ChemSusChem; 2014 Sep 16; 7(9):2419-22. PubMed ID: 25088665 [Abstract] [Full Text] [Related]
18. Mechanistic investigations of the catalytic formation of lactams from amines and water with liberation of H2. Gellrich U, Khusnutdinova JR, Leitus GM, Milstein D. J Am Chem Soc; 2015 Apr 15; 137(14):4851-9. PubMed ID: 25808067 [Abstract] [Full Text] [Related]
20. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2 -Scrubbing Solutions. Scott M, Blas Molinos B, Westhues C, Franciò G, Leitner W. ChemSusChem; 2017 Mar 22; 10(6):1085-1093. PubMed ID: 28103428 [Abstract] [Full Text] [Related] Page: [Next] [New Search]