These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 25825773

  • 1. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.
    Guhathakurta P, Prochniewicz E, Thomas DD.
    Proc Natl Acad Sci U S A; 2015 Apr 14; 112(15):4660-5. PubMed ID: 25825773
    [Abstract] [Full Text] [Related]

  • 2. A Cardiomyopathy Mutation in the Myosin Essential Light Chain Alters Actomyosin Structure.
    Guhathakurta P, Prochniewicz E, Roopnarine O, Rohde JA, Thomas DD.
    Biophys J; 2017 Jul 11; 113(1):91-100. PubMed ID: 28700929
    [Abstract] [Full Text] [Related]

  • 3. The structural dynamics of actin during active interaction with myosin depends on the isoform of the essential light chain.
    Prochniewicz E, Guhathakurta P, Thomas DD.
    Biochemistry; 2013 Mar 05; 52(9):1622-30. PubMed ID: 23339370
    [Abstract] [Full Text] [Related]

  • 4. Effect of the N-terminal extension in myosin essential light chain A1 on the mechanism of actomyosin ATP hydrolysis.
    Heeley DH, Belknap B, Atherton JL, Hasan SC, White HD.
    J Biol Chem; 2024 Jan 05; 300(1):105521. PubMed ID: 38042484
    [Abstract] [Full Text] [Related]

  • 5. Actin-Myosin Interaction: Structure, Function and Drug Discovery.
    Guhathakurta P, Prochniewicz E, Thomas DD.
    Int J Mol Sci; 2018 Sep 05; 19(9):. PubMed ID: 30189615
    [Abstract] [Full Text] [Related]

  • 6. High-throughput screen, using time-resolved FRET, yields actin-binding compounds that modulate actin-myosin structure and function.
    Guhathakurta P, Prochniewicz E, Grant BD, Peterson KC, Thomas DD.
    J Biol Chem; 2018 Aug 03; 293(31):12288-12298. PubMed ID: 29866882
    [Abstract] [Full Text] [Related]

  • 7. Transient interaction between the N-terminal extension of the essential light chain-1 and motor domain of the myosin head during the ATPase cycle.
    Logvinova DS, Matyushenko AM, Nikolaeva OP, Levitsky DI.
    Biochem Biophys Res Commun; 2018 Jan 01; 495(1):163-167. PubMed ID: 29102634
    [Abstract] [Full Text] [Related]

  • 8. Conformational selection during weak binding at the actin and myosin interface.
    Xu J, Root DD.
    Biophys J; 2000 Sep 01; 79(3):1498-510. PubMed ID: 10969011
    [Abstract] [Full Text] [Related]

  • 9. The N-terminus of A1-type myosin essential light chains binds actin and modulates myosin motor function.
    Timson DJ, Trayer HR, Trayer IP.
    Eur J Biochem; 1998 Aug 01; 255(3):654-62. PubMed ID: 9738905
    [Abstract] [Full Text] [Related]

  • 10. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A, Peyser YM, Nili M, Ajtai K, Reisler E, Burghardt TP.
    Biophys J; 2003 Feb 01; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [Abstract] [Full Text] [Related]

  • 11. Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1.
    Smyczynski C, Kasprzak AA.
    Biochemistry; 1997 Oct 28; 36(43):13201-7. PubMed ID: 9341208
    [Abstract] [Full Text] [Related]

  • 12. Mechanisms of the modulation of actin-myosin interactions by A1-type myosin light chains.
    Wawro B, Nieznanska H, Nieznanski K, Gruszczynska-Biegala J, Stepkowski D, Strzelecka-Golaszewska H.
    Biochim Biophys Acta Gen Subj; 2022 Jun 28; 1866(6):130132. PubMed ID: 35307509
    [Abstract] [Full Text] [Related]

  • 13. Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle.
    Hansen JE, Marner J, Pavlov D, Rubenstein PA, Reisler E.
    Biochemistry; 2000 Feb 22; 39(7):1792-9. PubMed ID: 10677229
    [Abstract] [Full Text] [Related]

  • 14. Mutational analysis of the role of the N terminus of actin in actomyosin interactions. Comparison with other mutant actins and implications for the cross-bridge cycle.
    Miller CJ, Wong WW, Bobkova E, Rubenstein PA, Reisler E.
    Biochemistry; 1996 Dec 24; 35(51):16557-65. PubMed ID: 8987990
    [Abstract] [Full Text] [Related]

  • 15. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.
    Burghardt TP, Sun X, Wang Y, Ajtai K.
    PLoS One; 2017 Dec 24; 12(4):e0174690. PubMed ID: 28423017
    [Abstract] [Full Text] [Related]

  • 16. Detection of nucleotide- and F-actin-induced movements in the switch II helix of the skeletal myosin using its differential oxidative cleavage mediated by an iron-EDTA complex disulfide-linked to the strong actin binding site.
    Bertrand R, Capony JP, Derancourt J, Kassab R.
    Biochemistry; 1999 Sep 14; 38(37):11914-25. PubMed ID: 10508394
    [Abstract] [Full Text] [Related]

  • 17. Myosin cleft closure determines the energetics of the actomyosin interaction.
    Takács B, O'Neall-Hennessey E, Hetényi C, Kardos J, Szent-Györgyi AG, Kovács M.
    FASEB J; 2011 Jan 14; 25(1):111-21. PubMed ID: 20837775
    [Abstract] [Full Text] [Related]

  • 18. Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin.
    Conibear PB, Geeves MA.
    Biophys J; 1998 Aug 14; 75(2):926-37. PubMed ID: 9675193
    [Abstract] [Full Text] [Related]

  • 19. Cardiac myosin binding protein-C modulates actomyosin binding and kinetics in the in vitro motility assay.
    Saber W, Begin KJ, Warshaw DM, VanBuren P.
    J Mol Cell Cardiol; 2008 Jun 14; 44(6):1053-1061. PubMed ID: 18482734
    [Abstract] [Full Text] [Related]

  • 20. Internal movement in myosin subfragment 1 detected by fluorescence resonance energy transfer.
    Xing J, Cheung HC.
    Biochemistry; 1995 May 16; 34(19):6475-87. PubMed ID: 7756279
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.