These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


450 related items for PubMed ID: 25828162

  • 1. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM, Van Buiten CB, Ramanathan R, Mancini RA.
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [Abstract] [Full Text] [Related]

  • 2. Effects of pyruvate on bovine heart mitochondria-mediated metmyoglobin reduction.
    Ramanathan R, Mancini RA.
    Meat Sci; 2010 Nov; 86(3):738-41. PubMed ID: 20659785
    [Abstract] [Full Text] [Related]

  • 3. Effects of lactate on bovine heart mitochondria-mediated metmyoglobin reduction.
    Ramanathan R, Mancini RA, Maheswarappa NB.
    J Agric Food Chem; 2010 May 12; 58(9):5724-9. PubMed ID: 20405943
    [Abstract] [Full Text] [Related]

  • 4. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG, Vinogradov AD.
    Biochim Biophys Acta; 2006 May 12; 1757(5-6):553-61. PubMed ID: 16678117
    [Abstract] [Full Text] [Related]

  • 5. Mitochondrial reduction of metmyoglobin: dependence on the electron transport chain.
    Tang J, Faustman C, Mancini RA, Seyfert M, Hunt MC.
    J Agric Food Chem; 2005 Jun 29; 53(13):5449-55. PubMed ID: 15969532
    [Abstract] [Full Text] [Related]

  • 6. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ, Doroshow JH.
    J Biol Chem; 1986 Mar 05; 261(7):3060-7. PubMed ID: 3456345
    [Abstract] [Full Text] [Related]

  • 7. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
    Grivennikova VG, Kotlyar AB, Karliner JS, Cecchini G, Vinogradov AD.
    Biochemistry; 2007 Sep 25; 46(38):10971-8. PubMed ID: 17760425
    [Abstract] [Full Text] [Related]

  • 8. Effects of 4-hydroxy-2-nonenal on beef heart mitochondrial ultrastructure, oxygen consumption, and metmyoglobin reduction.
    Ramanathan R, Mancini RA, Suman SP, Cantino ME.
    Meat Sci; 2012 Mar 25; 90(3):564-71. PubMed ID: 22030110
    [Abstract] [Full Text] [Related]

  • 9. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.
    Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AK.
    Biochim Biophys Acta; 2014 Mar 25; 1837(3):354-65. PubMed ID: 24355434
    [Abstract] [Full Text] [Related]

  • 10. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA, Lee CP, Ernster L.
    Biochim Biophys Acta; 1997 Jan 16; 1318(1-2):246-54. PubMed ID: 9030267
    [Abstract] [Full Text] [Related]

  • 11. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS, Obungu VH, Kiaira JK.
    Mol Biochem Parasitol; 1994 Mar 16; 64(1):87-94. PubMed ID: 8078526
    [Abstract] [Full Text] [Related]

  • 12. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R, Kotliar AB.
    Biokhimiia; 1991 Sep 16; 56(9):1676-87. PubMed ID: 1747428
    [Abstract] [Full Text] [Related]

  • 13. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S, Kotake Y, Humphries KM.
    Biochemistry; 2011 Dec 20; 50(50):10792-803. PubMed ID: 22091587
    [Abstract] [Full Text] [Related]

  • 14. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L, Montefoschi G, Fontana M, Cavallini D.
    Biochem Biophys Res Commun; 1994 Mar 15; 199(2):755-60. PubMed ID: 8135820
    [Abstract] [Full Text] [Related]

  • 15. [The mechanism of action of a synthetic derivative of 1,4-naphthoquinone on the respiratory chain of liver and heart mitochondria].
    Levin GS, Tremasova GIa, Kostova SV, Dregeris IaIa.
    Biokhimiia; 1989 Oct 15; 54(10):1630-7. PubMed ID: 2574998
    [Abstract] [Full Text] [Related]

  • 16. Bovine mitochondrial oxygen consumption effects on oxymyoglobin in the presence of lactate as a substrate for respiration.
    Ramanathan R, Mancini RA, Joseph P, Suman SP.
    Meat Sci; 2013 Apr 15; 93(4):893-7. PubMed ID: 23314615
    [Abstract] [Full Text] [Related]

  • 17. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD, Grivennikova VG.
    Biochemistry (Mosc); 2005 Feb 15; 70(2):120-7. PubMed ID: 15807648
    [Abstract] [Full Text] [Related]

  • 18. Species-specific effects on non-enzymatic metmyoglobin reduction in vitro.
    Elroy NN, Rogers J, Mafi GG, VanOverbeke DL, Hartson SD, Ramanathan R.
    Meat Sci; 2015 Jul 15; 105():108-13. PubMed ID: 25828165
    [Abstract] [Full Text] [Related]

  • 19. Effect of succinate sodium on the metmyoglobin reduction and color stability of beef patties.
    Zhu J, Liu F, Li X, Dai R.
    J Agric Food Chem; 2009 Jul 08; 57(13):5976-81. PubMed ID: 19499948
    [Abstract] [Full Text] [Related]

  • 20. The presence of rotenone-sensitive NADH dehydrogenase in the long slender bloodstream and the procyclic forms of Trypanosoma brucei brucei.
    Beattie DS, Howton MM.
    Eur J Biochem; 1996 Nov 01; 241(3):888-94. PubMed ID: 8944779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.