These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 25835748

  • 1. Organization and dynamics of tryptophan residues in brain spectrin: novel insight into conformational flexibility.
    Mitra M, Chaudhuri A, Patra M, Mukhopadhyay C, Chakrabarti A, Chattopadhyay A.
    J Fluoresc; 2015 May; 25(3):707-17. PubMed ID: 25835748
    [Abstract] [Full Text] [Related]

  • 2. Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
    Chattopadhyay A, Rawat SS, Kelkar DA, Ray S, Chakrabarti A.
    Protein Sci; 2003 Nov; 12(11):2389-403. PubMed ID: 14573853
    [Abstract] [Full Text] [Related]

  • 3. Conformational study of spectrin in presence of submolar concentrations of denaturants.
    Ray S, Bhattacharyya M, Chakrabarti A.
    J Fluoresc; 2005 Jan; 15(1):61-70. PubMed ID: 15711878
    [Abstract] [Full Text] [Related]

  • 4. Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
    Kelkar DA, Chattopadhyay A, Chakrabarti A, Bhattacharyya M.
    Biopolymers; 2005 Apr 15; 77(6):325-34. PubMed ID: 15648086
    [Abstract] [Full Text] [Related]

  • 5. Dynamic insight into protein structure utilizing red edge excitation shift.
    Chattopadhyay A, Haldar S.
    Acc Chem Res; 2014 Jan 21; 47(1):12-9. PubMed ID: 23981188
    [Abstract] [Full Text] [Related]

  • 6. Fluorescence of spectrin-bound prodan.
    Chakrabarti A.
    Biochem Biophys Res Commun; 1996 Sep 13; 226(2):495-7. PubMed ID: 8806662
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies.
    Patra M, Mitra M, Chakrabarti A, Mukhopadhyay C.
    J Biomol Struct Dyn; 2014 Sep 13; 32(6):852-65. PubMed ID: 24404769
    [Abstract] [Full Text] [Related]

  • 9. Organization and dynamics of tryptophans in the molten globule state of bovine alpha-lactalbumin utilizing wavelength-selective fluorescence approach: comparisons with native and denatured states.
    Chaudhuri A, Haldar S, Chattopadhyay A.
    Biochem Biophys Res Commun; 2010 Apr 16; 394(4):1082-6. PubMed ID: 20346348
    [Abstract] [Full Text] [Related]

  • 10. Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin.
    Bhattacharyya M, Ray S, Bhattacharya S, Chakrabarti A.
    J Biol Chem; 2004 Dec 31; 279(53):55080-8. PubMed ID: 15492010
    [Abstract] [Full Text] [Related]

  • 11. Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit.
    Pantazatos DP, MacDonald RI.
    J Biol Chem; 1997 Aug 22; 272(34):21052-9. PubMed ID: 9261107
    [Abstract] [Full Text] [Related]

  • 12. Effect of pH on stability, conformation, and chaperone activity of erythroid & non-erythroid spectrin.
    Bose D, Patra M, Chakrabarti A.
    Biochim Biophys Acta Proteins Proteom; 2017 Jun 22; 1865(6):694-702. PubMed ID: 28373029
    [Abstract] [Full Text] [Related]

  • 13. A DNA-binding antitumor antibiotic binds to spectrin.
    Majee S, Chakrabarti A.
    Biochem Biophys Res Commun; 1995 Jul 17; 212(2):428-32. PubMed ID: 7626057
    [Abstract] [Full Text] [Related]

  • 14. Comparative Analysis of Tryptophan Dynamics in Spectrin and Its Constituent Domains: Insights from Fluorescence.
    Pal S, Bose D, Chakrabarti A, Chattopadhyay A.
    J Phys Chem B; 2022 Feb 10; 126(5):1045-1053. PubMed ID: 34845910
    [Abstract] [Full Text] [Related]

  • 15. Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding.
    Krishnakumar SS, Panda D.
    Biochemistry; 2002 Jun 11; 41(23):7443-52. PubMed ID: 12044178
    [Abstract] [Full Text] [Related]

  • 16. Spectrin organization and dynamics: new insights.
    Chakrabarti A, Kelkar DA, Chattopadhyay A.
    Biosci Rep; 2006 Dec 11; 26(6):369-86. PubMed ID: 17029004
    [Abstract] [Full Text] [Related]

  • 17. Effects of GM1 on brain spectrin-aminophospholipid interactions.
    Sarkar S, Bose D, Giri RP, Mukhopadhyay MK, Chakrabarti A.
    Biochim Biophys Acta Biomembr; 2019 Jan 11; 1861(1):298-305. PubMed ID: 29920238
    [Abstract] [Full Text] [Related]

  • 18. Erythroid spectrin in miceller detergents.
    Ray S, Chakrabarti A.
    Cell Motil Cytoskeleton; 2003 Jan 11; 54(1):16-28. PubMed ID: 12451592
    [Abstract] [Full Text] [Related]

  • 19. Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites.
    Kahana E, Pinder JC, Smith KS, Gratzer WB.
    Biochem J; 1992 Feb 15; 282 ( Pt 1)(Pt 1):75-80. PubMed ID: 1540147
    [Abstract] [Full Text] [Related]

  • 20. Monitoring gramicidin conformations in membranes: a fluorescence approach.
    Rawat SS, Kelkar DA, Chattopadhyay A.
    Biophys J; 2004 Aug 15; 87(2):831-43. PubMed ID: 15298892
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.