These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1613 related items for PubMed ID: 25837326
1. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Kren BT, Unger GM, Abedin MJ, Vogel RI, Henzler CM, Ahmed K, Trembley JH. Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326 [Abstract] [Full Text] [Related]
2. Mechanism and efficacy of sub-50-nm tenfibgen nanocapsules for cancer cell-directed delivery of anti-CK2 RNAi to primary and metastatic squamous cell carcinoma. Unger GM, Kren BT, Korman VL, Kimbrough TG, Vogel RI, Ondrey FG, Trembley JH, Ahmed K. Mol Cancer Ther; 2014 Aug; 13(8):2018-29. PubMed ID: 24867250 [Abstract] [Full Text] [Related]
3. CK2 targeted RNAi therapeutic delivered via malignant cell-directed tenfibgen nanocapsule: dose and molecular mechanisms of response in xenograft prostate tumors. Ahmed K, Kren BT, Abedin MJ, Vogel RI, Shaughnessy DP, Nacusi L, Korman VL, Li Y, Dehm SM, Zimmerman CL, Niehans GA, Unger GM, Trembley JH. Oncotarget; 2016 Sep 20; 7(38):61789-61805. PubMed ID: 27557516 [Abstract] [Full Text] [Related]
4. Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer. Cheng G, Fan X, Hao M, Wang J, Zhou X, Sun X. Mol Cancer; 2016 Apr 30; 15(1):30. PubMed ID: 27130446 [Abstract] [Full Text] [Related]
5. Cyclin-Dependent Kinase 11 (CDK11) Is Required for Ovarian Cancer Cell Growth In Vitro and In Vivo, and Its Inhibition Causes Apoptosis and Sensitizes Cells to Paclitaxel. Liu X, Gao Y, Shen J, Yang W, Choy E, Mankin H, Hornicek FJ, Duan Z. Mol Cancer Ther; 2016 Jul 30; 15(7):1691-701. PubMed ID: 27207777 [Abstract] [Full Text] [Related]
6. CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer. Black JL, Harrell JC, Leisner TM, Fellmeth MJ, George SD, Reinhold D, Baker NM, Jones CD, Der CJ, Perou CM, Parise LV. Breast Cancer Res Treat; 2015 Jul 30; 152(2):337-46. PubMed ID: 26105795 [Abstract] [Full Text] [Related]
7. Impact of protein kinase CK2 downregulation and inhibition on oncomir clusters 17 ~ 92 and 106b ~ 25 in prostate, breast, and head and neck cancers. Kren BT, Henzler CM, Ahmed K, Trembley JH. Mol Med; 2024 Oct 11; 30(1):175. PubMed ID: 39394061 [Abstract] [Full Text] [Related]
8. CDK11p110 plays a critical role in the tumorigenicity of esophageal squamous cell carcinoma cells and is a potential drug target. Du Y, Yan D, Yuan Y, Xu J, Wang S, Yang Z, Cheng W, Tian X, Kan Q. Cell Cycle; 2019 Feb 11; 18(4):452-466. PubMed ID: 30722725 [Abstract] [Full Text] [Related]
9. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. Oncotarget; 2016 Mar 29; 7(13):16619-35. PubMed ID: 26918606 [Abstract] [Full Text] [Related]
10. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Blanchard Z, Paul BT, Craft B, ElShamy WM. Breast Cancer Res; 2015 Jan 13; 17(1):5. PubMed ID: 25583261 [Abstract] [Full Text] [Related]
11. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Kim YJ, Choi JS, Seo J, Song JY, Lee SE, Kwon MJ, Kwon MJ, Kundu J, Jung K, Oh E, Shin YK, Choi YL. Int J Cancer; 2014 May 15; 134(10):2424-36. PubMed ID: 24615768 [Abstract] [Full Text] [Related]
12. Critical role of CDK11(p58) in human breast cancer growth and angiogenesis. Chi Y, Huang S, Peng H, Liu M, Zhao J, Shao Z, Wu J. BMC Cancer; 2015 Oct 15; 15():701. PubMed ID: 26470709 [Abstract] [Full Text] [Related]
13. Tenfibgen ligand nanoencapsulation delivers bi-functional anti-CK2 RNAi oligomer to key sites for prostate cancer targeting using human xenograft tumors in mice. Trembley JH, Unger GM, Korman VL, Abedin MJ, Nacusi LP, Vogel RI, Slaton JW, Kren BT, Ahmed K. PLoS One; 2014 Oct 15; 9(10):e109970. PubMed ID: 25333839 [Abstract] [Full Text] [Related]
14. Inhibition of basal-like breast cancer growth by FTY720 in combination with epidermal growth factor receptor kinase blockade. Martin JL, Julovi SM, Lin MZ, de Silva HC, Boyle FM, Baxter RC. Breast Cancer Res; 2017 Aug 04; 19(1):90. PubMed ID: 28778177 [Abstract] [Full Text] [Related]
15. Cross-species genomic and functional analyses identify a combination therapy using a CHK1 inhibitor and a ribonucleotide reductase inhibitor to treat triple-negative breast cancer. Bennett CN, Tomlinson CC, Michalowski AM, Chu IM, Luger D, Mittereder LR, Aprelikova O, Shou J, Piwinica-Worms H, Caplen NJ, Hollingshead MG, Green JE. Breast Cancer Res; 2012 Jul 19; 14(4):R109. PubMed ID: 22812567 [Abstract] [Full Text] [Related]
16. Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation. Duan Z, Zhang J, Choy E, Harmon D, Liu X, Nielsen P, Mankin H, Gray NS, Hornicek FJ. Clin Cancer Res; 2012 Sep 01; 18(17):4580-8. PubMed ID: 22791884 [Abstract] [Full Text] [Related]
17. Modulation of Mitochondrial ERβ Expression Inhibits Triple-Negative Breast Cancer Tumor Progression by Activating Mitochondrial Function. Song IS, Jeong YJ, Jeong SH, Kim JE, Han J, Kim TH, Jang SW. Cell Physiol Biochem; 2019 Sep 01; 52(3):468-485. PubMed ID: 30873822 [Abstract] [Full Text] [Related]
18. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Kabil N, Bayraktar R, Kahraman N, Mokhlis HA, Calin GA, Lopez-Berestein G, Ozpolat B. Breast Cancer Res Treat; 2018 Oct 01; 171(3):593-605. PubMed ID: 29971628 [Abstract] [Full Text] [Related]
19. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Singel SM, Batten K, Cornelius C, Jia G, Fasciani G, Barron SL, Wright WE, Shay JW. Breast Cancer Res; 2014 Mar 19; 16(2):R28. PubMed ID: 24642040 [Abstract] [Full Text] [Related]
20. CK2 modulation of NF-kappaB, TP53, and the malignant phenotype in head and neck cancer by anti-CK2 oligonucleotides in vitro or in vivo via sub-50-nm nanocapsules. Brown MS, Diallo OT, Hu M, Ehsanian R, Yang X, Arun P, Lu H, Korman V, Unger G, Ahmed K, Van Waes C, Chen Z. Clin Cancer Res; 2010 Apr 15; 16(8):2295-307. PubMed ID: 20371694 [Abstract] [Full Text] [Related] Page: [Next] [New Search]