These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
211 related items for PubMed ID: 25840107
41. Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. Lü FG, Fu KY, Li Q, Guo WC, Ahmat T, Li GQ. Pestic Biochem Physiol; 2015 Jul; 122():86-95. PubMed ID: 26071812 [Abstract] [Full Text] [Related]
42. Identification and characterization of detoxification genes in two cerambycid beetles, Rhaphuma horsfieldi and Xylotrechus quadripes (Coleoptera: Cerambycidae: Clytini). Zhao YJ, Wang ZQ, Zhu JY, Liu NY. Comp Biochem Physiol B Biochem Mol Biol; 2020 Jun; 243-244():110431. PubMed ID: 32142896 [Abstract] [Full Text] [Related]
43. A Family of CSαβ Defensins and Defensin-Like Peptides from the Migratory Locust, Locusta migratoria, and Their Expression Dynamics during Mycosis and Nosemosis. Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. PLoS One; 2016 Jun; 11(8):e0161585. PubMed ID: 27556587 [Abstract] [Full Text] [Related]
44. Functional analysis of a pancreatic secretory trypsin inhibitor-like protein in insects: silencing effects resemble the human pancreatic autodigestion phenotype. van Hoef V, Breugelmans B, Spit J, Simonet G, Zels S, Billen J, Vanden Broeck J. Insect Biochem Mol Biol; 2011 Sep; 41(9):688-95. PubMed ID: 21571068 [Abstract] [Full Text] [Related]
45. Nuclear receptor hormone receptor 39 is required for locust moulting by regulating the chitinase and carboxypeptidase genes. Zhao XM, Qin ZY, Zhang J, Yang Y, Jia P, Yang Q, Ma EB, Zhang JZ. Insect Mol Biol; 2019 Aug; 28(4):537-549. PubMed ID: 30719786 [Abstract] [Full Text] [Related]
46. Molecular characterization and RNA interference analysis of the DEAD-box gene family in Locusta migratoria. Wang J, Zhang X, Deng S, Ma E, Zhang J, Xing S. Gene; 2020 Feb 20; 728():144297. PubMed ID: 31870788 [Abstract] [Full Text] [Related]
47. Metabolism of selected model substrates and insecticides by recombinant CYP6FD encoded by its gene predominately expressed in the brain of Locusta migratoria. Liu J, Wu H, Zhang X, Ma W, Zhu W, Silver K, Ma E, Zhang J, Zhu KY. Pestic Biochem Physiol; 2019 Sep 20; 159():154-162. PubMed ID: 31400777 [Abstract] [Full Text] [Related]
48. Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Yang D, Pearce RE, Wang X, Gaedigk R, Wan YJ, Yan B. Biochem Pharmacol; 2009 Jan 15; 77(2):238-47. PubMed ID: 18983829 [Abstract] [Full Text] [Related]
49. Identification and characteristic analysis of the catalase gene from Locusta migratoria. Zhang X, Li Y, Wang J, Zhang T, Li T, Dong W, Ma E, Zhang J. Pestic Biochem Physiol; 2016 Sep 15; 132():125-31. PubMed ID: 27521923 [Abstract] [Full Text] [Related]
50. RNAi-knockdown of the Locusta migratoria nuclear export factor protein results in insect mortality and alterations in gut microbiome. Xie J, Li S, Zhang W, Xia Y. Pest Manag Sci; 2019 May 15; 75(5):1383-1390. PubMed ID: 30387240 [Abstract] [Full Text] [Related]
51. Functional Characterization of an α-Esterase Gene Associated with Malathion Detoxification in Bradysia odoriphaga. Tang B, Dai W, Qi L, Du S, Zhang C. J Agric Food Chem; 2020 Jun 03; 68(22):6076-6083. PubMed ID: 32401500 [Abstract] [Full Text] [Related]
52. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. BMC Genomics; 2015 Oct 26; 16():867. PubMed ID: 26503342 [Abstract] [Full Text] [Related]
53. Vacuolar ATPase subunit H is essential for the survival and moulting of Locusta migratoria manilensis. Li C, Xia Y. Insect Mol Biol; 2012 Aug 26; 21(4):405-13. PubMed ID: 22642225 [Abstract] [Full Text] [Related]
54. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Heidari R, Devonshire AL, Campbell BE, Dorrian SJ, Oakeshott JG, Russell RJ. Insect Biochem Mol Biol; 2005 Jun 26; 35(6):597-609. PubMed ID: 15857765 [Abstract] [Full Text] [Related]
55. Do mosquitoes acquire organophosphate resistance by functional changes in carboxylesterases? Cui F, Qu H, Cong J, Liu XL, Qiao CL. FASEB J; 2007 Nov 26; 21(13):3584-91. PubMed ID: 17567568 [Abstract] [Full Text] [Related]
56. Functional Characterization of Two Carboxylesterase Genes Involved in Pyrethroid Detoxification in Helicoverpa armigera. Li YQ, Bai LS, Zhao CX, Xu JJ, Sun ZJ, Dong YL, Li DX, Liu XL, Ma ZQ. J Agric Food Chem; 2020 Mar 18; 68(11):3390-3402. PubMed ID: 32096985 [Abstract] [Full Text] [Related]
57. Microarray-based annotation of the gut transcriptome of the migratory locust, Locusta migratoria. Spit J, Badisco L, Vergauwen L, Knapen D, Vanden Broeck J. Insect Mol Biol; 2016 Dec 18; 25(6):745-756. PubMed ID: 27479692 [Abstract] [Full Text] [Related]
58. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Cui F, Lin Z, Wang H, Liu S, Chang H, Reeck G, Qiao C, Raymond M, Kang L. Insect Biochem Mol Biol; 2011 Jan 18; 41(1):1-8. PubMed ID: 20888910 [Abstract] [Full Text] [Related]
59. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. Hou L, Jiang F, Yang P, Wang X, Kang L. Insect Biochem Mol Biol; 2015 Aug 18; 63():63-71. PubMed ID: 26036749 [Abstract] [Full Text] [Related]
60. Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Anand SS, Bruckner JV, Haines WT, Muralidhara S, Fisher JW, Padilla S. Toxicol Appl Pharmacol; 2006 Apr 15; 212(2):156-66. PubMed ID: 16169030 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]