These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
434 related items for PubMed ID: 25840559
21. QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Ruta N, Liedgens M, Fracheboud Y, Stamp P, Hund A. Theor Appl Genet; 2010 Feb; 120(3):621-31. PubMed ID: 19847387 [Abstract] [Full Text] [Related]
22. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.). Xie Y, Feng Y, Chen Q, Zhao F, Zhou S, Ding Y, Song X, Li P, Wang B. Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730 [Abstract] [Full Text] [Related]
23. Identification of major QTL for waterlogging tolerance in maize using genome-wide association study and bulked sample analysis. Guo Z, Zhou S, Wang S, Li WX, Du H, Xu Y. J Appl Genet; 2021 Sep; 62(3):405-418. PubMed ID: 33788096 [Abstract] [Full Text] [Related]
29. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y. BMC Genomics; 2016 Nov 21; 17(1):946. PubMed ID: 27871222 [Abstract] [Full Text] [Related]
30. Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Cai H, Chen F, Mi G, Zhang F, Maurer HP, Liu W, Reif JC, Yuan L. Theor Appl Genet; 2012 Oct 21; 125(6):1313-24. PubMed ID: 22718302 [Abstract] [Full Text] [Related]
32. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J. PLoS Genet; 2014 Sep 21; 10(9):e1004573. PubMed ID: 25211220 [Abstract] [Full Text] [Related]
35. Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Sandhu N, Subedi SR, Singh VK, Sinha P, Kumar S, Singh SP, Ghimire SK, Pandey M, Yadaw RB, Varshney RK, Kumar A. Sci Rep; 2019 Jun 27; 9(1):9334. PubMed ID: 31249338 [Abstract] [Full Text] [Related]
36. Genetic control of root plasticity in response to salt stress in maize. Li P, Yang X, Wang H, Pan T, Wang Y, Xu Y, Xu C, Yang Z. Theor Appl Genet; 2021 May 27; 134(5):1475-1492. PubMed ID: 33661350 [Abstract] [Full Text] [Related]
37. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J. Theor Appl Genet; 2010 Aug 27; 121(3):417-31. PubMed ID: 20349034 [Abstract] [Full Text] [Related]
38. Natural variation in root traits identifies significant SNPs and candidate genes for phosphate deficiency tolerance in Zea mays L. Rajput P, Urfan M, Sharma S, Hakla HR, Nandan B, Das R, Roychowdhury R, Chowdhary SP. Physiol Plant; 2024 Aug 27; 176(3):e14396. PubMed ID: 38887929 [Abstract] [Full Text] [Related]
39. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhang Z, Wang T, Li Y. BMC Genomics; 2016 Nov 08; 17(1):894. PubMed ID: 27825295 [Abstract] [Full Text] [Related]
40. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. Thirunavukkarasu N, Hossain F, Arora K, Sharma R, Shiriga K, Mittal S, Mohan S, Namratha PM, Dogga S, Rani TS, Katragadda S, Rathore A, Shah T, Mohapatra T, Gupta HS. BMC Genomics; 2014 Dec 24; 15(1):1182. PubMed ID: 25539911 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]