These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


514 related items for PubMed ID: 25840971

  • 1. Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes.
    Tsai SC, Shih LY, Liang ST, Huang YJ, Kuo MC, Huang CF, Shih YS, Lin TH, Chiu MC, Liang DC.
    Clin Cancer Res; 2015 Aug 01; 21(15):3541-51. PubMed ID: 25840971
    [Abstract] [Full Text] [Related]

  • 2. RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation.
    Kuo MC, Liang DC, Huang CF, Shih YS, Wu JH, Lin TL, Shih LY.
    Leukemia; 2009 Aug 01; 23(8):1426-31. PubMed ID: 19282830
    [Abstract] [Full Text] [Related]

  • 3. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations.
    Harada Y, Harada H.
    J Cell Physiol; 2009 Jul 01; 220(1):16-20. PubMed ID: 19334039
    [Abstract] [Full Text] [Related]

  • 4. Gene mutations differently impact the prognosis of the myelodysplastic and myeloproliferative classes of chronic myelomonocytic leukemia.
    Cervera N, Itzykson R, Coppin E, Prebet T, Murati A, Legall S, Vey N, Solary E, Birnbaum D, Gelsi-Boyer V.
    Am J Hematol; 2014 Jun 01; 89(6):604-9. PubMed ID: 24595958
    [Abstract] [Full Text] [Related]

  • 5. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia.
    Engel ME, Hiebert SW.
    Cancer Treat Res; 2010 Jun 01; 145():127-47. PubMed ID: 20306249
    [Abstract] [Full Text] [Related]

  • 6. Heterogeneous patterns of CEBPalpha mutation status in the progression of myelodysplastic syndrome and chronic myelomonocytic leukemia to acute myelogenous leukemia.
    Shih LY, Huang CF, Lin TL, Wu JH, Wang PN, Dunn P, Kuo MC, Tang TC.
    Clin Cancer Res; 2005 Mar 01; 11(5):1821-6. PubMed ID: 15756005
    [Abstract] [Full Text] [Related]

  • 7. RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant.
    Ricci C, Fermo E, Corti S, Molteni M, Faricciotti A, Cortelezzi A, Lambertenghi Deliliers G, Beran M, Onida F.
    Clin Cancer Res; 2010 Apr 15; 16(8):2246-56. PubMed ID: 20371679
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Myelodysplastic syndromes without peripheral monocytosis but with evidence of marrow monocytosis share clinical and molecular characteristics with CMML.
    Schuler E, Frank F, Hildebrandt B, Betz B, Strupp C, Rudelius M, Aul C, Schroeder T, Gattermann N, Haas R, Germing U.
    Leuk Res; 2018 Feb 15; 65():1-4. PubMed ID: 29216536
    [Abstract] [Full Text] [Related]

  • 10. RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome.
    Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC, Yao M, Wu SJ, Tseng MH, Tien HF.
    Br J Haematol; 2007 Nov 15; 139(3):405-14. PubMed ID: 17910630
    [Abstract] [Full Text] [Related]

  • 11. AML1/RUNX1 gene point mutations in childhood myeloid malignancies.
    Migas A, Savva N, Mishkova O, Aleinikova OV.
    Pediatr Blood Cancer; 2011 Oct 15; 57(4):583-7. PubMed ID: 21294243
    [Abstract] [Full Text] [Related]

  • 12. Mutations in chronic myelomonocytic leukemia and their prognostic relevance.
    Jian J, Qiao Y, Li Y, Guo Y, Ma H, Liu B.
    Clin Transl Oncol; 2021 Sep 15; 23(9):1731-1742. PubMed ID: 33861431
    [Abstract] [Full Text] [Related]

  • 13. Cutting the cord from myelodysplastic syndromes: chronic myelomonocytic leukemia-specific biology and management strategies.
    Padron E, Steensma DP.
    Curr Opin Hematol; 2015 Mar 15; 22(2):163-70. PubMed ID: 25575034
    [Abstract] [Full Text] [Related]

  • 14. Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations.
    Niimi H, Harada H, Harada Y, Ding Y, Imagawa J, Inaba T, Kyo T, Kimura A.
    Leukemia; 2006 Apr 15; 20(4):635-44. PubMed ID: 16467864
    [Abstract] [Full Text] [Related]

  • 15. Genetic and epigenetic factors interacting with clonal hematopoiesis resulting in chronic myelomonocytic leukemia.
    Carr RM, Patnaik MM.
    Curr Opin Hematol; 2020 Jan 15; 27(1):2-10. PubMed ID: 31688455
    [Abstract] [Full Text] [Related]

  • 16. Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome.
    Shih LY, Lin TL, Wang PN, Wu JH, Dunn P, Kuo MC, Huang CF.
    Cancer; 2004 Sep 01; 101(5):989-98. PubMed ID: 15329908
    [Abstract] [Full Text] [Related]

  • 17. The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations.
    Huang G, Zhao X, Wang L, Elf S, Xu H, Zhao X, Sashida G, Zhang Y, Liu Y, Lee J, Menendez S, Yang Y, Yan X, Zhang P, Tenen DG, Osato M, Hsieh JJ, Nimer SD.
    Blood; 2011 Dec 15; 118(25):6544-52. PubMed ID: 22012064
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1.
    Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B, Dicker F, Schnittger S, Dugas M, Kern W, Haferlach C, Haferlach T.
    J Clin Oncol; 2010 Aug 20; 28(24):3858-65. PubMed ID: 20644105
    [Abstract] [Full Text] [Related]

  • 20. Molecular mechanisms that produce secondary MDS/AML by RUNX1/AML1 point mutations.
    Harada Y, Harada H.
    J Cell Biochem; 2011 Feb 20; 112(2):425-32. PubMed ID: 21268063
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.