These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 25843715
1. TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Perera A, Eisen D, Wagner M, Laube SK, Künzel AF, Koch S, Steinbacher J, Schulze E, Splith V, Mittermeier N, Müller M, Biel M, Carell T, Michalakis S. Cell Rep; 2015 Apr 14; 11(2):283-94. PubMed ID: 25843715 [Abstract] [Full Text] [Related]
2. Hydroxymethylation of microRNA-365-3p Regulates Nociceptive Behaviors via Kcnh2. Pan Z, Zhang M, Ma T, Xue ZY, Li GF, Hao LY, Zhu LJ, Li YQ, Ding HL, Cao JL. J Neurosci; 2016 Mar 02; 36(9):2769-81. PubMed ID: 26937014 [Abstract] [Full Text] [Related]
3. Dynamics of genomic 5-hydroxymethylcytosine during mouse oocyte growth. Sakashita A, Kobayashi H, Wakai T, Sotomaru Y, Hata K, Kono T. Genes Cells; 2014 Aug 02; 19(8):629-36. PubMed ID: 24995522 [Abstract] [Full Text] [Related]
5. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL. Nature; 2011 Sep 04; 477(7366):606-10. PubMed ID: 21892189 [Abstract] [Full Text] [Related]
6. Induction of DNA Hydroxymethylation Protects the Brain After Stroke. Morris-Blanco KC, Kim T, Lopez MS, Bertogliat MJ, Chelluboina B, Vemuganti R. Stroke; 2019 Sep 04; 50(9):2513-2521. PubMed ID: 31327315 [Abstract] [Full Text] [Related]
8. Stable 5-Hydroxymethylcytosine (5hmC) Acquisition Marks Gene Activation During Chondrogenic Differentiation. Taylor SE, Li YH, Smeriglio P, Rath M, Wong WH, Bhutani N. J Bone Miner Res; 2016 Mar 04; 31(3):524-34. PubMed ID: 26363184 [Abstract] [Full Text] [Related]
9. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D'Souza Z, Nakayama M, Matsuda M, Turp A, Ndjetehe E, Encheva V, Kudo NR, Koseki H, Sasaki H, Hajkova P. Nat Cell Biol; 2016 Feb 04; 18(2):225-233. PubMed ID: 26751286 [Abstract] [Full Text] [Related]
12. Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Kang J, Lienhard M, Pastor WA, Chawla A, Novotny M, Tsagaratou A, Lasken RS, Thompson EC, Surani MA, Koralov SB, Kalantry S, Chavez L, Rao A. Proc Natl Acad Sci U S A; 2015 Aug 04; 112(31):E4236-45. PubMed ID: 26199412 [Abstract] [Full Text] [Related]
13. Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Cakouros D, Hemming S, Gronthos K, Liu R, Zannettino A, Shi S, Gronthos S. Epigenetics Chromatin; 2019 Jan 03; 12(1):3. PubMed ID: 30606231 [Abstract] [Full Text] [Related]
14. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F. EMBO J; 2013 Mar 06; 32(5):645-55. PubMed ID: 23353889 [Abstract] [Full Text] [Related]