These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 25846482

  • 41. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.
    Tam HL, Tang DT, Leung WY, Ho KM, Greenfield PF.
    Water Sci Technol; 2004; 50(10):59-65. PubMed ID: 15656296
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.
    Gitari WM, Petrik LF, Key DL, Okujeni C.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(2):117-37. PubMed ID: 21170774
    [Abstract] [Full Text] [Related]

  • 44. Aerobic granule formation in a sequencing batch reactor treating newsprint effluent under low phosphate conditions.
    Liu J, Nguyen D, Paice M.
    Water Sci Technol; 2010; 62(11):2571-8. PubMed ID: 21099044
    [Abstract] [Full Text] [Related]

  • 45. Manganese removal processes and geochemical behavior in residues from passive treatment of mine drainage.
    Le Bourre B, Neculita CM, Coudert L, Rosa E.
    Chemosphere; 2020 Nov; 259():127424. PubMed ID: 32599383
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Size and performance of anoxic limestone drains to neutralize acidic mine drainage.
    Cravotta CA.
    J Environ Qual; 2003 Nov; 32(4):1277-89. PubMed ID: 12931883
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.
    Grettenberger CL, Pearce AR, Bibby KJ, Jones DS, Burgos WD, Macalady JL.
    Appl Environ Microbiol; 2017 Apr 01; 83(7):. PubMed ID: 28087535
    [Abstract] [Full Text] [Related]

  • 52. Strategies for decolorization and detoxification of pulp and paper mill effluent.
    Garg SK, Tripathi M.
    Rev Environ Contam Toxicol; 2011 Apr 01; 212():113-36. PubMed ID: 21432056
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Stability of metal-rich residues from laboratory multi-step treatment system for ferriferous acid mine drainage.
    Jouini M, Rakotonimaro TV, Neculita CM, Genty T, Benzaazoua M.
    Environ Sci Pollut Res Int; 2019 Dec 01; 26(35):35588-35601. PubMed ID: 30903478
    [Abstract] [Full Text] [Related]

  • 55. Ferrous iron removal by limestone and crushed concrete in dynamic flow columns.
    Wang Y, Sikora S, Townsend TG.
    J Environ Manage; 2013 Jul 30; 124():165-71. PubMed ID: 23591465
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage.
    Kalin M, Fyson A, Wheeler WN.
    Sci Total Environ; 2006 Aug 01; 366(2-3):395-408. PubMed ID: 16375949
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.