These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
478 related items for PubMed ID: 25848687
21. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Aleza P, Froelicher Y, Schwarz S, Agustí M, Hernández M, Juárez J, Luro F, Morillon R, Navarro L, Ollitrault P. Ann Bot; 2011 Jul; 108(1):37-50. PubMed ID: 21586529 [Abstract] [Full Text] [Related]
22. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. Yun Z, Gao H, Liu P, Liu S, Luo T, Jin S, Xu Q, Xu J, Cheng Y, Deng X. BMC Plant Biol; 2013 Mar 16; 13():44. PubMed ID: 23497220 [Abstract] [Full Text] [Related]
23. Effect of the Rare Earth Element Lanthanum (La) on the Growth and Development of Citrus Rootstock Seedlings. Yin H, Wang J, Zeng Y, Shen X, He Y, Ling L, Cao L, Fu X, Peng L, Chun C. Plants (Basel); 2021 Jul 06; 10(7):. PubMed ID: 34371591 [Abstract] [Full Text] [Related]
24. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under drought stress. Xu E, Fan G, Niu S, Zhao Z, Deng M, Dong Y. PLoS One; 2014 Jul 06; 9(11):e113313. PubMed ID: 25405758 [Abstract] [Full Text] [Related]
25. Metabolomic analysis of primary metabolites in citrus leaf during defense responses. Asai T, Matsukawa T, Kajiyama S. J Biosci Bioeng; 2017 Mar 06; 123(3):376-381. PubMed ID: 27789172 [Abstract] [Full Text] [Related]
26. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Ding Y, Chang J, Ma Q, Chen L, Liu S, Jin S, Han J, Xu R, Zhu A, Guo J, Luo Y, Xu J, Xu Q, Zeng Y, Deng X, Cheng Y. Plant Physiol; 2015 May 06; 168(1):357-76. PubMed ID: 25802366 [Abstract] [Full Text] [Related]
27. An integrated proteomic and metabolomic study to evaluate the effect of nucleus-cytoplasm interaction in a diploid citrus cybrid between sweet orange and lemon. Faddetta T, Abbate L, Renzone G, Palumbo Piccionello A, Maggio A, Oddo E, Scaloni A, Puglia AM, Gallo G, Carimi F, Fatta Del Bosco S, Mercati F. Plant Mol Biol; 2018 Nov 06; 98(4-5):407-425. PubMed ID: 30341661 [Abstract] [Full Text] [Related]
28. Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Wang Z, Wang M, Liu L, Meng F. Int J Mol Sci; 2013 Oct 14; 14(10):20299-325. PubMed ID: 24129170 [Abstract] [Full Text] [Related]
30. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. Dutra de Souza J, de Andrade Silva EM, Coelho Filho MA, Morillon R, Bonatto D, Micheli F, da Silva Gesteira A. PLoS One; 2017 Jul 14; 12(5):e0177993. PubMed ID: 28545114 [Abstract] [Full Text] [Related]
31. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress. Zhang C, Zhang L, Zhang S, Zhu S, Wu P, Chen Y, Li M, Jiang H, Wu G. BMC Plant Biol; 2015 Jan 21; 15():17. PubMed ID: 25604012 [Abstract] [Full Text] [Related]
32. Effects of rootstocks and developmental time on the dynamic changes of main functional substances in 'Orah' (Citrus reticulata Blanco) by HPLC coupled with UV detection. Li S, Yang L, Wang M, Chen Y, Yu J, Chen H, Yang H, Wang W, Cai Z, Hong L. Front Plant Sci; 2024 Jan 21; 15():1382768. PubMed ID: 39263418 [Abstract] [Full Text] [Related]
33. Genome-Wide Identification and Functional Analysis of the AP2/ERF Transcription Factor Family in Citrus Rootstock under Waterlogging Stress. He W, Luo L, Xie R, Chai J, Wang H, Wang Y, Chen Q, Wu Z, Yang S, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. Int J Mol Sci; 2023 May 19; 24(10):. PubMed ID: 37240335 [Abstract] [Full Text] [Related]
34. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves. Wu T, Wang Y, Zheng Y, Fei Z, Dandekar AM, Xu K, Han Z, Cheng L. Plant Cell Physiol; 2015 Sep 19; 56(9):1748-61. PubMed ID: 26076968 [Abstract] [Full Text] [Related]
35. Integration of metabolomics and subcellular organelle expression microarray to increase understanding the organic acid changes in post-harvest citrus fruit. Sun X, Zhu A, Liu S, Sheng L, Ma Q, Zhang L, Nishawy EM, Zeng Y, Xu J, Ma Z, Cheng Y, Deng X. J Integr Plant Biol; 2013 Nov 19; 55(11):1038-53. PubMed ID: 23758915 [Abstract] [Full Text] [Related]
36. Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency. Oustric J, Herbette S, Morillon R, Giannettini J, Berti L, Santini J. Front Plant Sci; 2021 Nov 19; 12():634237. PubMed ID: 33897725 [Abstract] [Full Text] [Related]
37. Physiological and Transcriptional Changes of Three Citrus Rootstock Seedlings under Iron Deficiency. Fu L, Zhu Q, Sun Y, Du W, Pan Z, Peng S. Front Plant Sci; 2017 Nov 19; 8():1104. PubMed ID: 28694816 [Abstract] [Full Text] [Related]
38. Comparative Analysis of Transcriptomes of Diploid and Tetraploid Miscanthus lutarioriparius under Drought Stress. Xu X, Wang S, Han Y, Wang Y, Xu P, Chen C, Zhang G. Genes (Basel); 2022 May 13; 13(5):. PubMed ID: 35627258 [Abstract] [Full Text] [Related]
39. Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Wu J, Cao J, Su M, Feng G, Xu Y, Yi H. Hortic Res; 2019 May 13; 6():33. PubMed ID: 30854210 [Abstract] [Full Text] [Related]
40. Physiological and TMT-labeled proteomic analyses reveal important roles of sugar and secondary metabolism in Citrus junos under cold stress. Jiang J, Hou R, Yang N, Li L, Deng J, Qin G, Ding D. J Proteomics; 2021 Apr 15; 237():104145. PubMed ID: 33581353 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]