These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1511 related items for PubMed ID: 25848726
1. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Zhao L, Kim TH, Kim HW, Ahn JC, Kim SY. Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726 [Abstract] [Full Text] [Related]
3. Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria. Zhou Z, Peng S, Sui M, Chen S, Huang L, Xu H, Jiang T. Colloids Surf B Biointerfaces; 2018 Jan 01; 161():394-402. PubMed ID: 29112913 [Abstract] [Full Text] [Related]
4. Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers. Zhao L, Kim TH, Kim HW, Ahn JC, Kim SY. Mater Sci Eng C Mater Biol Appl; 2016 Oct 01; 67():611-622. PubMed ID: 27287160 [Abstract] [Full Text] [Related]
5. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers. Zeng L, Pan Y, Wang S, Wang X, Zhao X, Ren W, Lu G, Wu A. ACS Appl Mater Interfaces; 2015 Aug 05; 7(30):16781-91. PubMed ID: 26204589 [Abstract] [Full Text] [Related]
6. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Xu X, Chong Y, Liu X, Fu H, Yu C, Huang J, Zhang Z. Acta Biomater; 2019 Jan 15; 84():328-338. PubMed ID: 30500447 [Abstract] [Full Text] [Related]
7. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. Biomaterials; 2016 Nov 15; 106():87-97. PubMed ID: 27552319 [Abstract] [Full Text] [Related]
8. A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy. Yu Y, Zhang Z, Wang Y, Zhu H, Li F, Shen Y, Guo S. Acta Biomater; 2017 Sep 01; 59():170-180. PubMed ID: 28629893 [Abstract] [Full Text] [Related]
9. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, Aldalbahi A, Zuo X, Song S, Fan C, He D. Nanoscale; 2016 Jan 28; 8(4):2090-6. PubMed ID: 26701141 [Abstract] [Full Text] [Related]
10. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M, Wang Y, Sun X, Wang W, Chen L. ACS Appl Mater Interfaces; 2015 Apr 15; 7(14):7516-25. PubMed ID: 25815901 [Abstract] [Full Text] [Related]
11. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, Yuan H, Norton SJ, Griffin GD. Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015 Apr 15; 7(1):17-33. PubMed ID: 25316579 [Abstract] [Full Text] [Related]
12. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Fales AM, Yuan H, Vo-Dinh T. Langmuir; 2011 Oct 04; 27(19):12186-12190. PubMed ID: 21859159 [Abstract] [Full Text] [Related]
13. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells. Adarsh N, Ramya AN, Maiti KK, Ramaiah D. Chemistry; 2017 Oct 12; 23(57):14286-14291. PubMed ID: 28796314 [Abstract] [Full Text] [Related]
14. IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging. Nagy-Simon T, Potara M, Craciun AM, Licarete E, Astilean S. J Colloid Interface Sci; 2018 May 01; 517():239-250. PubMed ID: 29428811 [Abstract] [Full Text] [Related]
15. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Jiang L, Qian J, Cai F, He S. Anal Bioanal Chem; 2011 Jul 01; 400(9):2793-800. PubMed ID: 21455653 [Abstract] [Full Text] [Related]
16. Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents. Sun C, Gao M, Zhang X. Anal Bioanal Chem; 2017 Aug 01; 409(20):4915-4926. PubMed ID: 28585085 [Abstract] [Full Text] [Related]
17. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, Saranya G, Arya JS, Vijayan VM, Maiti KK. Biomaterials; 2018 Oct 01; 181():140-181. PubMed ID: 30081304 [Abstract] [Full Text] [Related]
18. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS. Polavarapu L, Xu QH. Langmuir; 2008 Oct 07; 24(19):10608-11. PubMed ID: 18729527 [Abstract] [Full Text] [Related]
19. Surface-enhanced Raman scattering imaging using noble metal nanoparticles. Wilson AJ, Willets KA. Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013 Oct 07; 5(2):180-9. PubMed ID: 23335562 [Abstract] [Full Text] [Related]
20. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection. Ma X, Xia Y, Ni L, Song L, Wang Z. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 07; 121():657-61. PubMed ID: 24368285 [Abstract] [Full Text] [Related] Page: [Next] [New Search]