These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 25849082
21. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA. Theor Appl Genet; 2006 Aug; 113(3):497-507. PubMed ID: 16767448 [Abstract] [Full Text] [Related]
22. Identification of Putative Quantitative Trait Loci for Improved Seed Oil Quality in Peanuts. Hu P, Zhang J, Song Y, Zhao X, Jin X, Su Q, Yang Y, Wang J. Genes (Basel); 2024 Jan 05; 15(1):. PubMed ID: 38254964 [Abstract] [Full Text] [Related]
23. Fatty Acids Profile of Wild and Cultivar Tunisian Peanut Oilseeds (A. hypogaea L.) at Different Developmental Stages. Cherif AO, Pepe C, Messaouda MB. J Oleo Sci; 2023 Jan 05; 72(4):379-387. PubMed ID: 36990747 [Abstract] [Full Text] [Related]
24. Improved Genetic Map Identified Major QTLs for Drought Tolerance- and Iron Deficiency Tolerance-Related Traits in Groundnut. Pandey MK, Gangurde SS, Sharma V, Pattanashetti SK, Naidu GK, Faye I, Hamidou F, Desmae H, Kane NA, Yuan M, Vadez V, Nigam SN, Varshney RK. Genes (Basel); 2020 Dec 30; 12(1):. PubMed ID: 33396649 [Abstract] [Full Text] [Related]
25. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Liao B, Jiang H. Theor Appl Genet; 2020 Jan 30; 133(1):37-49. PubMed ID: 31559527 [Abstract] [Full Text] [Related]
26. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Huang L, Zhou X, Chen Y, Yu J, Chen W, Lei Y, Liao B, Jiang H. Theor Appl Genet; 2017 Aug 30; 130(8):1635-1648. PubMed ID: 28508097 [Abstract] [Full Text] [Related]
27. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. Luo H, Pandey MK, Zhi Y, Zhang H, Xu S, Guo J, Wu B, Chen H, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Sudini HK, Varshney RK, Lei Y, Liao B, Jiang H. Theor Appl Genet; 2020 Apr 30; 133(4):1133-1148. PubMed ID: 31980836 [Abstract] [Full Text] [Related]
28. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). Luo Z, Cui R, Chavarro C, Tseng YC, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B, Dufault N, Brenneman T, Isleib TG, Holbrook C, Ozias-Akins P, Wang J. Theor Appl Genet; 2020 Apr 30; 133(4):1201-1212. PubMed ID: 31974667 [Abstract] [Full Text] [Related]
29. Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Pittman RN, Stalker HT, Holbrook CC, Pederson GA, Yu J. Theor Appl Genet; 2011 Dec 30; 123(8):1307-17. PubMed ID: 21822942 [Abstract] [Full Text] [Related]
30. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B. BMC Plant Biol; 2010 Jan 27; 10():17. PubMed ID: 20105299 [Abstract] [Full Text] [Related]
31. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). Lu Q, Liu H, Hong Y, Li H, Liu H, Li X, Wen S, Zhou G, Li S, Chen X, Liang X. BMC Genomics; 2018 Dec 07; 19(1):887. PubMed ID: 30526476 [Abstract] [Full Text] [Related]
32. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut. Wang Y, Zhang X, Zhao Y, Prakash CS, He G, Yin D. Genome; 2015 Aug 07; 58(8):375-83. PubMed ID: 26332746 [Abstract] [Full Text] [Related]
33. Transcriptomic Analysis Reveals the High-Oleic Acid Feedback Regulating the Homologous Gene Expression of Stearoyl-ACP Desaturase 2 (SAD2) in Peanuts. Liu H, Gu J, Lu Q, Li H, Hong Y, Chen X, Ren L, Deng L, Liang X. Int J Mol Sci; 2019 Jun 25; 20(12):. PubMed ID: 31242553 [Abstract] [Full Text] [Related]
34. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. BMC Plant Biol; 2019 Dec 03; 19(1):537. PubMed ID: 31795931 [Abstract] [Full Text] [Related]
35. Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population. Fang H, Fu X, Ge H, Zhang A, Shan T, Wang Y, Li P, Wang B. BMC Plant Biol; 2021 Jul 21; 21(1):344. PubMed ID: 34289812 [Abstract] [Full Text] [Related]
36. Mapping Quantitative Trait Loci (QTLs) for Hundred-Pod and Hundred-Seed Weight under Seven Environments in a Recombinant Inbred Line Population of Cultivated Peanut (Arachis hypogaea L.). Miao P, Meng X, Li Z, Sun S, Chen CY, Yang X. Genes (Basel); 2023 Sep 13; 14(9):. PubMed ID: 37761932 [Abstract] [Full Text] [Related]
37. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y. Theor Appl Genet; 2012 Aug 13; 125(4):715-29. PubMed ID: 22534790 [Abstract] [Full Text] [Related]
38. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. Andersen PC, Gorbet DW. J Agric Food Chem; 2002 Feb 27; 50(5):1298-305. PubMed ID: 11853521 [Abstract] [Full Text] [Related]
39. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Zhang H, Chu Y, Dang P, Tang Y, Jiang T, Clevenger JP, Ozias-Akins P, Holbrook C, Wang ML, Campbell H, Hagan A, Chen C. Theor Appl Genet; 2020 Jul 27; 133(7):2051-2061. PubMed ID: 32144466 [Abstract] [Full Text] [Related]
40. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G. BMC Biotechnol; 2019 Apr 29; 19(1):24. PubMed ID: 31035982 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]