These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 25856664

  • 1. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: systematic review.
    Kannenberg A, Zacharias B, Pröbsting E.
    J Rehabil Res Dev; 2014; 51(10):1469-96. PubMed ID: 25856664
    [Abstract] [Full Text] [Related]

  • 2. The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis.
    Hahn A, Bueschges S, Prager M, Kannenberg A.
    Disabil Rehabil; 2022 Dec; 44(24):7349-7367. PubMed ID: 34694952
    [Abstract] [Full Text] [Related]

  • 3. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review.
    Mileusnic MP, Rettinger L, Highsmith MJ, Hahn A.
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023
    [Abstract] [Full Text] [Related]

  • 4. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial.
    Jayaraman C, Mummidisetty CK, Albert MV, Lipschutz R, Hoppe-Ludwig S, Mathur G, Jayaraman A.
    J Neuroeng Rehabil; 2021 May 25; 18(1):88. PubMed ID: 34034753
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V, Knippels I, Janssen P, Biesbrouck E, Lechler K, Peeraer L.
    Biomed Eng Online; 2016 Dec 19; 15(Suppl 3):142. PubMed ID: 28105945
    [Abstract] [Full Text] [Related]

  • 12. Comparison of mobility and user satisfaction between a microprocessor knee and a standard prosthetic knee: a summary of seven single-subject trials.
    Howard CL, Wallace C, Perry B, Stokic DS.
    Int J Rehabil Res; 2018 Mar 19; 41(1):63-73. PubMed ID: 29293160
    [Abstract] [Full Text] [Related]

  • 13. Comparison of patient-reported and functional outcomes following transition from mechanical to microprocessor knee in the low-activity user with a unilateral transfemoral amputation.
    Davie-Smith F, Carse B.
    Prosthet Orthot Int; 2021 Jun 01; 45(3):198-204. PubMed ID: 34016872
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM, Eberly VJ, Gronely JK, Perry J, Yule WJ, Mulroy SJ.
    Prosthet Orthot Int; 2012 Mar 01; 36(1):95-104. PubMed ID: 22223685
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.