These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 25856664

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Evaluation of gait outcomes for individuals with established unilateral transfemoral amputation following the provision of microprocessor controlled knees in the context of a clinical service.
    Carse B, Scott H, Brady L, Colvin J.
    Prosthet Orthot Int; 2021 Jun 01; 45(3):254-261. PubMed ID: 34016870
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking.
    Möller S, Rusaw D, Hagberg K, Ramstrand N.
    Prosthet Orthot Int; 2019 Jun 01; 43(3):257-265. PubMed ID: 30375285
    [Abstract] [Full Text] [Related]

  • 26. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K, Martinet N, Grumillier C, Ghannouchi S, André JM, Paysant J.
    Arch Phys Med Rehabil; 2010 Jun 01; 91(6):919-25. PubMed ID: 20510984
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ, Willingham LL, Buell NC, Allyn KJ, Smith DG.
    Arch Phys Med Rehabil; 2007 Feb 01; 88(2):207-17. PubMed ID: 17270519
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR, Levine JA, Brey RH, McCrady SK, Padgett DJ, Joyner MJ.
    Arch Phys Med Rehabil; 2008 Jul 01; 89(7):1380-5. PubMed ID: 18586142
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Mobility analysis of amputees (MAAT 3): Matching individuals based on comorbid health reveals improved function for above-knee prosthesis users with microprocessor knee technology.
    Wurdeman SR, Stevens PM, Campbell JH.
    Assist Technol; 2020 Sep 02; 32(5):236-242. PubMed ID: 30592436
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Outcomes associated with the use of microprocessor-controlled prosthetic knees among individuals with unilateral transfemoral limb loss: a systematic review.
    Sawers AB, Hafner BJ.
    J Rehabil Res Dev; 2013 Sep 02; 50(3):273-314. PubMed ID: 23881757
    [Abstract] [Full Text] [Related]

  • 38. Effects of microprocessor-controlled prosthetic knees on self-reported mobility, quality of life, and psychological states in patients with transfemoral amputations.
    Şen Eİ, Aydın T, Buğdaycı D, Kesiktaş FN.
    Acta Orthop Traumatol Turc; 2020 Sep 02; 54(5):502-506. PubMed ID: 33155559
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Benefits for Adults with Transfemoral Amputations and Peripheral Artery Disease Using Microprocessor Compared with Nonmicroprocessor Prosthetic Knees.
    Wong CK, Rheinstein J, Stern MA.
    Am J Phys Med Rehabil; 2015 Oct 02; 94(10):804-10. PubMed ID: 25768067
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.