These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 25857538

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction.
    Uehara K, Morishita T, Kubota S, Funase K.
    Behav Brain Res; 2013 Mar 01; 240():33-45. PubMed ID: 23174210
    [Abstract] [Full Text] [Related]

  • 3. Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb.
    Takahashi K, Maruyama A, Hirakoba K, Maeda M, Etoh S, Kawahira K, Rothwell JC.
    Brain Stimul; 2011 Apr 01; 4(2):90-6. PubMed ID: 21511209
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O, Rothwell J, Rosenkranz K.
    Clin Neurophysiol; 2006 Apr 01; 117(4):855-63. PubMed ID: 16448846
    [Abstract] [Full Text] [Related]

  • 8. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL.
    Exp Physiol; 2016 Dec 01; 101(12):1552-1564. PubMed ID: 27652591
    [Abstract] [Full Text] [Related]

  • 9. Changes in cortical excitability during and just before motor imagery.
    Aono K, Kodama M, Masakado Y, Muraoka Y.
    Tokai J Exp Clin Med; 2013 Apr 20; 38(1):1-6. PubMed ID: 23564568
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Parallel modulation of interhemispheric inhibition and the size of a cortical hand muscle representation during active contraction.
    Turco CV, Fassett HJ, Locke MB, El-Sayes J, Nelson AJ.
    J Neurophysiol; 2019 Jul 01; 122(1):368-377. PubMed ID: 31116626
    [Abstract] [Full Text] [Related]

  • 14. Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles.
    Mileva KN, Sumners DP, Bowtell JL.
    Eur J Appl Physiol; 2012 Dec 01; 112(12):3959-70. PubMed ID: 22434254
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Change in the ipsilateral motor cortex excitability is independent from a muscle contraction phase during unilateral repetitive isometric contractions.
    Uehara K, Morishita T, Kubota S, Funase K.
    PLoS One; 2013 Dec 01; 8(1):e55083. PubMed ID: 23383063
    [Abstract] [Full Text] [Related]

  • 18. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A, Matsunaga K, Tanaka N, Rothwell JC.
    Clin Neurophysiol; 2006 Apr 01; 117(4):864-70. PubMed ID: 16495147
    [Abstract] [Full Text] [Related]

  • 19. Mechanisms underlying mirror movements in Parkinson's disease: a transcranial magnetic stimulation study.
    Cincotta M, Borgheresi A, Balestrieri F, Giovannelli F, Ragazzoni A, Vanni P, Benvenuti F, Zaccara G, Ziemann U.
    Mov Disord; 2006 Jul 01; 21(7):1019-25. PubMed ID: 16547917
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.