These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 25863711

  • 1. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.
    Zhang DH, Peng LJ, Wang Y, Li YQ.
    Colloids Surf B Biointerfaces; 2015 May 01; 129():206-10. PubMed ID: 25863711
    [Abstract] [Full Text] [Related]

  • 2. Effect of poly(vinyl acetate-acrylamide) microspheres properties and steric hindrance on the immobilization of Candida rugosa lipase.
    Zhang DH, Yuwen LX, Li C, Li YQ.
    Bioresour Technol; 2012 Nov 01; 124():233-6. PubMed ID: 22989650
    [Abstract] [Full Text] [Related]

  • 3. Improving immobilization of lipase onto magnetic microspheres with moderate hydrophobicity/hydrophilicity.
    Zhang DH, Yuwen LX, Xie YL, Li W, Li XB.
    Colloids Surf B Biointerfaces; 2012 Jan 01; 89():73-8. PubMed ID: 21955507
    [Abstract] [Full Text] [Related]

  • 4. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone.
    Kim M, Park JM, Um HJ, Lee DH, Lee KH, Kobayashi F, Iwasaka Y, Hong CS, Min J, Kim YH.
    J Basic Microbiol; 2010 Jun 01; 50(3):218-26. PubMed ID: 20473952
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Immobilization of lipase on porous monodisperse chitosan microspheres.
    Chen Y, Liu J, Xia C, Zhao C, Ren Z, Zhang W.
    Biotechnol Appl Biochem; 2015 Jun 01; 62(1):101-6. PubMed ID: 24823273
    [Abstract] [Full Text] [Related]

  • 7. Immobilization of lipase from Candida rugosa on Sepabeads(®): the effect of lipase oxidation by periodates.
    Prlainović NZ, Knežević-Jugović ZD, Mijin DZ, Bezbradica DI.
    Bioprocess Biosyst Eng; 2011 Sep 01; 34(7):803-10. PubMed ID: 21347667
    [Abstract] [Full Text] [Related]

  • 8. Effect of Candida antarctica lipase B immobilization on the porous structure of the carrier.
    Miletić N, Vuković Z, Nastasović A, Loos K.
    Macromol Biosci; 2011 Nov 10; 11(11):1537-43. PubMed ID: 21842505
    [Abstract] [Full Text] [Related]

  • 9. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study.
    Yeşiloğlu Y, Şit L.
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug 10; 39(4):247-51. PubMed ID: 21117873
    [Abstract] [Full Text] [Related]

  • 10. Immobilization of Candida rugosa lipase on poly(allyl glycidyl ether-co-ethylene glycol dimethacrylate) macroporous polymer particles.
    Vaidya BK, Ingavle GC, Ponrathnam S, Kulkarni BD, Nene SN.
    Bioresour Technol; 2008 Jun 10; 99(9):3623-9. PubMed ID: 17766105
    [Abstract] [Full Text] [Related]

  • 11. Immobilization of lipase onto micron-size magnetic beads.
    Liu X, Guan Y, Shen R, Liu H.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug 05; 822(1-2):91-7. PubMed ID: 15998604
    [Abstract] [Full Text] [Related]

  • 12. Reversible immobilization of Candida rugosa lipase on fibrous polymer grafted and sulfonated p(HEMA/EGDMA) beads.
    Yakup Arica M, Soydogan H, Bayramoglu G.
    Bioprocess Biosyst Eng; 2010 Feb 05; 33(2):227-36. PubMed ID: 19350276
    [Abstract] [Full Text] [Related]

  • 13. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.
    Zhang Q, Zheng Z, Liu C, Liu C, Tan T.
    Colloids Surf B Biointerfaces; 2016 Apr 01; 140():446-451. PubMed ID: 26803008
    [Abstract] [Full Text] [Related]

  • 14. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification.
    Xie R, Cui C, Chen B, Tan T.
    Appl Biochem Biotechnol; 2015 Oct 01; 177(3):771-9. PubMed ID: 26245260
    [Abstract] [Full Text] [Related]

  • 15. Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis.
    Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA.
    Biomacromolecules; 2008 Feb 01; 9(2):463-71. PubMed ID: 18197630
    [Abstract] [Full Text] [Related]

  • 16. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on beta-cyclodextrin-based polymer.
    Ozmen EY, Yilmaz M.
    Colloids Surf B Biointerfaces; 2009 Feb 15; 69(1):58-62. PubMed ID: 19091527
    [Abstract] [Full Text] [Related]

  • 17. Use of insoluble yeast beta-glucan as a support for immobilization of Candida rugosa lipase.
    Vaidya BK, Singhal RS.
    Colloids Surf B Biointerfaces; 2008 Jan 15; 61(1):101-5. PubMed ID: 17681766
    [Abstract] [Full Text] [Related]

  • 18. Wood mimetic hydrogel beads for enzyme immobilization.
    Park S, Kim SH, Won K, Choi JW, Kim YH, Kim HJ, Yang YH, Lee SH.
    Carbohydr Polym; 2015 Jan 22; 115():223-9. PubMed ID: 25439889
    [Abstract] [Full Text] [Related]

  • 19. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester.
    Yilmaz E, Can K, Sezgin M, Yilmaz M.
    Bioresour Technol; 2011 Jan 22; 102(2):499-506. PubMed ID: 20846857
    [Abstract] [Full Text] [Related]

  • 20. Preparation and application of poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/kappa-Carrageenan hydrogels for immobilization of lipase.
    Tümtürk H, Karaca N, Demirel G, Sahin F.
    Int J Biol Macromol; 2007 Feb 20; 40(3):281-5. PubMed ID: 16997369
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.