These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 25868010

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice].
    Wang SL, Zhang YX, Liu HZ, Xin H.
    Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings.
    Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX, Zheng HL.
    J Hazard Mater; 2015 Oct 30; 297():173-82. PubMed ID: 25958266
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings.
    Tiwari PK, Shweta, Singh AK, Singh VP, Prasad SM, Ramawat N, Tripathi DK, Chauhan DK, Rai AK.
    Ecotoxicol Environ Saf; 2019 Jul 30; 176():321-329. PubMed ID: 30951979
    [Abstract] [Full Text] [Related]

  • 10. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants.
    Liu J, Dhungana B, Cobb GP.
    Environ Toxicol Chem; 2018 Jan 30; 37(1):11-20. PubMed ID: 28796373
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Salts affect the interaction of ZnO or CuO nanoparticles with wheat.
    Stewart J, Hansen T, McLean JE, McManus P, Das S, Britt DW, Anderson AJ, Dimkpa CO.
    Environ Toxicol Chem; 2015 Sep 30; 34(9):2116-25. PubMed ID: 25917258
    [Abstract] [Full Text] [Related]

  • 16. Hydrogen sulfide (H2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings.
    Rai P, Singh VP, Peralta-Videa J, Tripathi DK, Sharma S, Corpas FJ.
    J Hazard Mater; 2021 Aug 05; 415():124907. PubMed ID: 34088169
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.
    Zafar H, Ali A, Zia M.
    Appl Biochem Biotechnol; 2017 Jan 05; 181(1):365-378. PubMed ID: 27562818
    [Abstract] [Full Text] [Related]

  • 19. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings.
    Shaw AK, Hossain Z.
    Chemosphere; 2013 Oct 05; 93(6):906-15. PubMed ID: 23791109
    [Abstract] [Full Text] [Related]

  • 20. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter.
    Wang Z, Li J, Zhao J, Xing B.
    Environ Sci Technol; 2011 Jul 15; 45(14):6032-40. PubMed ID: 21671609
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.