These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
601 related items for PubMed ID: 25872760
1. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate. Nordström J, Alderborn G. J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760 [Abstract] [Full Text] [Related]
2. Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study. Arndt OR, Baggio R, Adam AK, Harting J, Franceschinis E, Kleinebudde P. J Pharm Sci; 2018 Dec; 107(12):3143-3152. PubMed ID: 30244008 [Abstract] [Full Text] [Related]
3. Impact of functionalized particle structure on roll compaction/dry granulation and tableting of calcium carbonate. Grote S, Kleinebudde P. Int J Pharm; 2018 Jun 10; 544(1):235-241. PubMed ID: 29689365 [Abstract] [Full Text] [Related]
9. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation. Mosig J, Kleinebudde P. J Pharm Sci; 2015 Mar 10; 104(3):1108-18. PubMed ID: 25558976 [Abstract] [Full Text] [Related]
11. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures. Hadžović E, Betz G, Hadžidedić S, El-Arini SK, Leuenberger H. Int J Pharm; 2011 Sep 15; 416(1):97-103. PubMed ID: 21704142 [Abstract] [Full Text] [Related]
12. Assessment of processing and polymorphic form effect on the powder and tableting properties of microcrystalline celluloses I and II. Rojas J, López A, Gamboa Y, González C, Montoya F. Chem Pharm Bull (Tokyo); 2011 Sep 15; 59(5):603-7. PubMed ID: 21532198 [Abstract] [Full Text] [Related]
13. Comparative binder efficiency modeling of dry granulation binders using roller compaction. Gupte A, DeHart M, Stagner WC, Haware RV. Drug Dev Ind Pharm; 2017 Apr 15; 43(4):574-583. PubMed ID: 27977316 [Abstract] [Full Text] [Related]
14. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction. Dumarey M, Wikström H, Fransson M, Sparén A, Tajarobi P, Josefson M, Trygg J. Int J Pharm; 2011 Sep 15; 416(1):110-9. PubMed ID: 21708239 [Abstract] [Full Text] [Related]
15. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process. Wade JB, Martin GP, Long DF. Int J Pharm; 2015 Jul 05; 488(1-2):95-101. PubMed ID: 25888799 [Abstract] [Full Text] [Related]
17. Influence of granulating method on physical and mechanical properties, compression behavior, and compactibility of lactose and microcrystalline cellulose granules. Horisawa E, Danjo K, Sunada H. Drug Dev Ind Pharm; 2000 Jun 05; 26(6):583-93. PubMed ID: 10826106 [Abstract] [Full Text] [Related]
20. The effect of shape and porosity on the compression behaviour and tablet forming ability of granular materials formed from microcrystalline cellulose. Johansson B, Alderborn G. Eur J Pharm Biopharm; 2001 Nov 05; 52(3):347-57. PubMed ID: 11677077 [Abstract] [Full Text] [Related] Page: [Next] [New Search]